1 |
WANG D , GENG Z , LI B , et al . High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochim Acta, 2015, 173: 377-384.
|
2 |
LIU L , LU Q , YANG S , et al . All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@PPy nanocomposites[J]. Advanced Materials Technologies, 2018, 3(1):1700206-1700215.
|
3 |
KRISHNAMOORTHY K , PAZHAMALA P , KIM S J . Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials[J]. Energy Environmental Science, 2018, 11(6): 1595-1602.
|
4 |
YANG J , LI G , PAN Z , et al . All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22172-22180.
|
5 |
MARIAPPAN V K , PAZHAMALAI P , SAHOO S . Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application[J]. Electrochimica Acta, 2018, 265: 514-522.
|
6 |
杨建锋, 李林艳, 吴振岳, 等 . 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837.
|
|
YANG J F , LI L Y , WU Z Y , et al . Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837.
|
7 |
GUO X , BAI N , TIAN Y , et al . Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors[J]. Journal of Power Sources, 2018, 408: 51-57.
|
8 |
YUN T G , WANG H , BAI I , et al . Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability[J]. ACS Applied Materials&Interfaces, 2015, 7(17): 9228-9234.
|
9 |
JOST K , DURKIN D P , HAVERHALS L M , et al . Natural fiber welded electrode yarns for knittable textile supercapacitors[J]. Advanced Energy Materials, 2014, 5(4):1401286-1401294.
|
10 |
ZHONG C , DENG Y , HU W , et al . A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539.
|
11 |
TIE J F, RONG L D , LIU H C , et al . An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as multimodal sensor[J]. Polymer Materials, 2020, doi: 10.1039/c9py01737b .
doi: 10.1039/c9py01737b
|
12 |
SHU H , YANG Y , LIU C Z , et al . A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(2): 550-560.
|
13 |
DIAO W J , WU L L , MA X F , et al . Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network[J]. Journal of Applied Polymer Science, 2019, 136(29): 47783-47794.
|
14 |
LIU Z H , LIANG G J , ZHAN Y X , et al . A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte[J]. Nano Enerey, 2019, 58: 732-742.
|
15 |
陈斌, 吕彦伯, 谌可炜, 等 . 固态超级电容器的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939.
|
|
CHEN B , LYU Y B, CHEN K Y , et al . Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939.
|
16 |
LOH X J . Supramolecular host-guest polymeric materials for biomedical applications[J]. Royal Society of Chemistry, 2014, 1(2): 185-195.
|
17 |
MALDA J , VISSER J , MELCHEELS F P , et al . Engineering hydrogels for biofabrication[J]. Advanced Materials, 2013, 25: 5011-5028.
|
18 |
WEBBERM J , LANGER R . Drug delivery by supramolecular design[J]. Chemical Society Reviews, 2017, 46(21): 6600-6620.
|
19 |
CULVER H R , CLEGG J R , PEPPAS N A . Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery[J]. Accounts of Chemical Research, 2018, 50: 170-178.
|
20 |
VINH V T , DUCKSHIN P Y , LEE C . Hydrogel applications for adsorption of contaminants in water and wastewater treatment[J]. Environmental Science and Pollution Researches, 2018, 25(25): 24569-24599.
|
21 |
ZHOU X Y , ZHAO F , GUO Y H . A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environmental Science, 2018, 11: 1985-1992.
|
22 |
JANE R C , KAR W Y, JEAN Y C , et al . Recent advances in photocrosslinkable hydrogels for biomedical applications[J]. BioTechniques, 2019, 66(1): 40-53.
|
23 |
GU Y W , ZHAO J L , JOHNSON J A . A (macro)molecular-level understanding of polymer network topology[J]. Trends in Chemistry, 2019, 1(3): 318-334.
|
24 |
GUO Y H , BAE J W, ZHAO F , et al . Functional hydrogels for next-generation batteries and supercapacitors[J]. Trends in Chemistry, 2019, 1(3): 335-348.
|
25 |
DU Y K , USHA P S , BORA Y , et al . Recent progress of in situ formed gels for biomedical applications[J]. Progress in Polymer Science. 2013, 38(3/4): 672-701.
|
26 |
DANKS A E , HALL S R , SCHNEPP Z . The evolution of sol-gel chemistry as a technique for materials synthesis[J]. Royal Society of Chemistry, 2016, 3: 91-112.
|
27 |
QIN M , SUN M , BAI R B , et al . Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing[J]. Advanced Materials, 2018, 30(21): 1800468-1800475.
|
28 |
GONG J P . Materials both tough and soft[J]. Science, 2014, 344(6180): 161-162.
|
29 |
LIU H , XIONG C , TAO Z , et al . Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel[J]. Royal Society of Chemistry, 2015, 5: 33083-33088.
|
30 |
GAO H , LIAN K . Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review[J]. Royal Society of Chemistry Advances, 2014, 4(62): 33091-33113.
|
31 |
JAIN A , TRIPATHI S K . Experimental studies on high-performance supercapacitor based on nanogel polymer electrolyte with treated activated charcoal[J]. Ionics, 2013, 19(3): 549-557.
|
32 |
HSUEH M F , HUANG C W , WU C A , et al . The synergistic effect of nitrile and ether functionalities for gel electrolytes used in supercapacitors[J]. The Journal of Physical Chemistry C, 2013, 117(33): 16751-16758.
|
33 |
OBEIDAT A , RASTOGI A C . Graphene and poly(3, 4-ethylenedioxythiophene)(PEDOT) based hybrid supercapacitors with ionic liquid gel electrolyte in solid state design and their electrochemical performance in storage of solar photovoltaic generated electricity[J]. MRS Advances, 2016, 1(53): 3553-3564.
|
34 |
LUKATSKAVA M R , DUNN B , GOGOTSI Y . Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647-12660.
|
35 |
YAN J , WANG Q , WEI T , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816-1300859.
|
36 |
CHOUDHURY N A , SAMPATH S , SHUKLA A K . Hydrogel-polymer electrolytes for electrochemical capacitors: An overview[J]. Royal Society of Chemistry, 2016, 2: 55-67.
|
37 |
FEI H J , YANG C Y , BAO H , et al . Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinylalcohol)-H2SO4 porous gel electrolytes[J]. Journal of Power Sources, 2014, 266(15): 488-495.
|
38 |
SCHROEDER M , ISKEN P , WINTER M , et al . An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices[J]. Journal of the Electrochemical Society, 2013, 160(10):A1753-A1758.
|
39 |
寻之玉, 侯璞, 刘旸, 等 . 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
|
|
XUN J Y , HOU P , LIU Y , et al . Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019, 47(11): 71-83.
|
40 |
ENTHILKUMAR S T , SELVAN R K , PONPANDIAN N , et al . Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor[J]. RSC Advances, 2012, 2(24): 8937-8941.
|
41 |
YINY J , ZHOU J J , MANSOUR A N , et al . Effect of NaI/I2 mediators on properties of PEO/LiAlO2 based all-solid-state supercapacitors[J]. Journal of Power Sources, 2016, 196(14): 5997-6002.
|
42 |
ENTHILKUMAR S T , SELVAN R K , PONPANDIAN N , et al . Improved performance of electric double layer capacitor using redox additive (VO2+/VO2 +) aqueous electrolyte[J]. Journal of Materials Chemistry A, 2015, 1(27): 7913-7926.
|
43 |
XIE Y B , WANG J H . Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte[J]. Journal of Sol-Gel Science and Technology, 2018, 86(3): 760-772.
|
44 |
MA G , LI J , SUN K , et al . High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator[J]. Journal of Power Sources, 2017, 256: 281-287.
|
45 |
KIM M , KIM J . Redox active KI solid-state electrolyte for battery-like electrochemical capacitive energy storage based on MgCo2O4 nanoneedles on porous β-polytype silicon carbide[J]. Electrochimica Acta, 2018, 260: 921-931.
|
46 |
LE P A , NGUYEN V T , YEN P J, et al . A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors[J]. Sustainable Energy &Fuels, 2019, 3(6): 1536-1545.
|
47 |
PHUOC A L , VAN T N, PO J Y, et al . A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors[J]. Sustainable Energy & Fuels, 2019, doi: 10.1039/c9se00011a .
doi: 10.1039/c9se00011a
|
48 |
CHRISROPH H , MICHAEL S . Electrolytes and conducting salts[J]. Lithium-Ion Batteries: Basics and Applications, 2018, 3(1): 59-74.
|
49 |
SINGH H P , KUMAR R , SEKHON S S , et al . Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3 [J]. Bulletin of Materials Science, 2005, 28(5): 467-472.
|