储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1266-1283.doi: 10.19799/cnki.2095-4239.2020.0108

• 钠离子电池技术专刊 • 上一篇    下一篇

钠离子硫化物固态电解质研究进展

贾曼曼(), 张隆()   

  1. 纳米清洁能源中心,燕山大学亚稳材料制备技术与科学国家重点实验室,河北 秦皇岛 066004
  • 收稿日期:2020-03-16 修回日期:2020-04-01 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 张隆 E-mail:MJia2020@163.com;lzhang@ysu.edu.cn
  • 作者简介:贾曼曼(1995—),女,硕士研究生,主要研究方向为钠离子硫化物电解质,E-mail:MJia2020@163.com
  • 基金资助:
    河北省自然科学基金(E2018203301)

Recent development on sulfide solid electrolytes for solid-state sodium batteries

Manman JIA(), Long ZHANG()   

  1. Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
  • Received:2020-03-16 Revised:2020-04-01 Online:2020-09-05 Published:2020-09-08
  • Contact: Long ZHANG E-mail:MJia2020@163.com;lzhang@ysu.edu.cn

摘要:

全固态钠离子电池由正极、固态电解质和负极三部分组成,固态电解质作为导通离子隔绝电子的核心部件,既需要高的离子电导率,又要求良好的电解质-电极的固固接触和界面稳定性以维持有效的离子传输。硫化物电解质因具有众多优势而备受关注。近年来,在提高其离子电导率方面已取得较大进展,在对其化学稳定性、与电极材料的界面稳定性等方面研究还在不断深入。本文通过对近期相关文献的梳理,讨论了目前钠离子硫化物无机固态电解质的发展概况,分别对硫化物电解质的制备工艺、结构以及电导率做了系统评述,着重介绍了机械化学合成、固相烧结以及化学液相合成的方法,系统分析了基于Na3PS4和Na3SbS4的三元硫化物及基于Na11Sn2PS12和Na11Sn2SbS12的四元硫化物的成分设计策略,重点总结了阴离子和阳离子掺杂所导致的钠离子空位/间隙、离子结合能、晶格软化、钠离子分布、结构对称性等变化对优化离子输运的作用机制。同时,总结了基于硫化物电解质的全固态钠电池界面特性的研究进展,主要分析了正极-电解质固固接触的改善策略和金属负极-电解质界面失效机理和稳定性提升措施,表明解决界面问题的紧迫性。最后,展望了钠离子硫化物电解质下一步可能的发展方向。

关键词: 硫化物电解质, 全固态钠电池, 制备工艺, 离子电导率, 界面

Abstract:

All-solid-state sodium-ion batteries consist of positive and negative electrodes and solid electrolytes. Solid electrolytes require not only high ionic conductivity but also a good electrolyteelectrode solid contact and interfacial stability. Of the diverse sodium-ion solid electrolytes, including oxides, sulfides, borohydrides, and polymers, sulfides are extremely attractive because of their advantages of high ionic conductivity and elastic modulus, good electrical contact with electrodes with cold-processing or solution coating, and broad temperature stability. In recent years, significant progress has been made concerning their ionic conductivity; however, their chemical stability and interfacial stability toward electrodes still requires in-depth study. In this study, the progress regarding sulfide-based sodium-ion solid electrolytes is reviewed, including preparation techniques, chemical structure, and ion transport. The mechanochemical synthesis, solid-state reaction, and solution synthesis methods are primarily discussed. The design strategies regarding the Na3PS4- and Na3SbS4-based ternary phase systems and the Na11Sn2PS12- and Na11Sn2SbS12-based quaternary phase systems are summarized. The influencing mechanism of cation- and anion-doping on Na+ vacancies/interstitials, Na+-lattice binding energy, lattice softening, Na+ distribution, and space groups is analyzed. In parallel, the interfacial performance between electrolytes and electrodes in all-solid-state batteries is reviewed, including the solidsolid contact between positive electrodes and electrolytes and the interfacial stability between negative electrodes and electrolytes. It is important to solve the interfacial issue that has arisen regarding sulfide solid electrolytes. Finally, some suggestions are presented for further investigations of sulfide-based sodium-ion solid electrolytes.

Key words: sulfide-based solid electrolytes, solid-state sodium batteries, synthesis technique, ionic conductivity, interface

中图分类号: