储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1284-1299.doi: 10.19799/j.cnki.2095-4239.2020.0119

• 钠离子电池技术专刊 • 上一篇    下一篇

NASICON结构钠离子固体电解质及固态钠电池应用研究进展

杨菁1(), 刘高瞻1,2, 沈麟1,2, 姚霞银1,2()   

  1. 1.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
    2.中国科学院大学,北京 100049
  • 收稿日期:2020-03-25 修回日期:2020-04-02 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 姚霞银 E-mail:yangjing@nimte.ac.cn;yaoxy@nimte.ac.cn
  • 作者简介:杨菁(1989—),男,博士,助理研究员,研究方向为NASICON结构固体电解质材料及全固态电池,E-mail:yangjing@nimte.ac.cn
  • 基金资助:
    国家自然科学基金(51872303);浙江省自然科学基金(LD18E020004);中国科学院青年创新促进会(2017342)

Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries

Jing YANG1(), Gaozhan LIU1,2, Lin SHEN1,2, Xiayin YAO1,2()   

  1. 1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-03-25 Revised:2020-04-02 Online:2020-09-05 Published:2020-09-08
  • Contact: Xiayin YAO E-mail:yangjing@nimte.ac.cn;yaoxy@nimte.ac.cn

摘要:

钠离子电池由于原料成本低廉、来源广泛,被视作锂离子电池最具竞争力的替代体系之一。然而,传统钠离子电池中使用易燃的有机电解液存在漏液、燃烧乃至爆炸的安全隐患。NASICON结构固体电解质材料具有安全性能高、稳定性良好、成本低廉、环境友好等优点,可代替有机电解液与隔膜从而实现固态钠电池,是能源存储领域的研究热点。然而其电导率仍需进一步提升、与电极间界面阻抗大的问题,限制了其进一步应用。针对目前NASICON结构固体电解质存在的问题,本文首先介绍了其晶体结构和钠离子传输机理,分析了影响晶粒电导率和晶界电导率的主要因素,分别总结了提高晶粒电导率和晶界电导率的改性方法,指出合适离子取代、提高物相纯度和致密度是电导率提高的有效途径。此外,本文阐述了NASICON结构固体电解质材料在固态钠电池应用中存在的界面问题,总结分析了现有界面改性的策略,指出对新型修饰材料和复合材料的探索有望进一步改善固体电解质与电极的界面特性。最后,对NASICON结构固体电解质材料的研究进行了展望。

关键词: 钠离子固体电解质, NASICON结构, 离子电导率, 界面改性, 固态钠电池

Abstract:

Owing to the low cost and abundance of sodium sources, sodium-ion batteries are considered one of the most competitive alternatives to lithium-ion batteries. However, the application of flammable organic liquid electrolytes in sodium ion batteries has potential safety hazards, including leakage, combustion, and even explosion. Due to its high safety, good stability, low cost, and environmental friendliness, NASICON-structured solid electrolytes can replace liquid electrolytes and separators to realize solid-state sodium batteries; this is becoming a new research hotspot in the field of energy storage. However, the ionic conductivity of NASICON-structured solid electrolytes needs to be further improved and high interface resistance between electrodes and solid electrolytes currently limit its further application. In this short review, the major crystalline structures and the sodium-ion migration mechanism of the NASICON-structured solid electrolyte are introduced and the main factors affecting the bulk conductivity and grain boundary conductivity are analyzed. Strategies to improve the bulk conductivity and grain boundary conductivity in recent years are summarized, showing that proper ion substitution and improvements in the phase purity and density are effective ways to improve the ionic conductivity. In addition, challenges for interface engineering and some interfacial modification methods in NASICON-structured solid electrolyte-based solid-state sodium batteries are presented, indicating that the exploration of novel modified materials and composite electrolytes is expected to further improve the interface properties. Finally, possible research directions and development trends of NASICON-structured solid electrolyte-based solid-state sodium batteries are discussed.

Key words: sodium solid electrolyte, NASICON structure, ionic conductivity, interfacial modification, solid state sodium battery

中图分类号: