储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 745-753.doi: 10.12028/j.issn.2095-4239.2016.0035
吴剑芳,郭 新
收稿日期:
2016-07-01
修回日期:
2016-07-27
出版日期:
2016-09-01
发布日期:
2016-09-01
通讯作者:
郭新,教授,研究方向为全固态锂离子电池及超级电容器,具有大脑神经功能的智能器件,气敏传感器,缺陷的物理与化学,E-mail:xguo@hust.edu.cn。
作者简介:
吴剑芳(1988—),博士在读,研究方向为全固态锂离子电池,E-mail:706411858@qq.com;
Wu Jianfang, Guo Xin
Received:
2016-07-01
Revised:
2016-07-27
Online:
2016-09-01
Published:
2016-09-01
摘要: 固态电解质能有效地解决液态电解质存在的易燃、易泄漏及化学稳定性差等问题,然而,固态电解质的锂离子电导率(105~103 S/cm)显著低于液态电解质电导率(102 S/cm),导致全固态锂离子电池的充放电性能比液态电池差。因此,进一步提高固态电解质的锂离子电导率成为改善全固态电池性能的关键,认知并调控材料中的点缺陷对于改善锂离子电导具有重要意义。本研究团队选用两种重要的固态锂离子传导氧化物材料:具有钙钛矿结构的Li3xLa2/3x□1/32xTiO3(0.04x0.16)和具有石榴石结构的Li7La3Zr2O12为研究对象,对其中存在的点缺陷及缺陷反应进行分析,并进一步阐述各种点缺陷对材料锂离子、氧离子和电子电导率的影响。
吴剑芳,郭 新. 固态锂离子传导氧化物中的点缺陷[J]. 储能科学与技术, 2016, 5(5): 745-753.
Wu Jianfang, Guo Xin. Point defects in solid-state lithium ion conducting oxides[J]. Energy Storage Science and Technology, 2016, 5(5): 745-753.
[1] YOSHINO A. The birth of the lithium-ion battery[J]. Angew. Chem. Int. Edit.,2012,51(24):5798-5800. [2] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367. [3] GOODENOUGH J B,KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mater.,2010,22(3):587-603. [4] THANGADURAI V,WEPPNER W. Li6ALa2Ta2O12 (A=Sr, Ba):Novel garnet-like oxides for fast lithium ion conduction[J]. Adv. Funct. Mater.,2005,15(1):107-112. [5] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem. Int. Edit.,2007,46(41):7778-7781. [6] GEIGER C A,ALEKSEEV E,LAZIC B,et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet:A fast lithium-ion conductor[J]. Inorg. Chem.,2011,50(3):1089-1097. [7] ZHANG Q,SCHMIDT N,LAN J,et al. A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte[J]. Chem. Commun.,2014,50(42):5593-5596. [8] INAGUMA Y,CHEN L,ITOH,et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Commun.,1993,86(10):689-693. [9] STRAMARE S,THANGADURAI V,WEPPNER W. Lithium lanthanum titanates:A review [J]. Chem. Mater.,2003,15(21):3974-3990. [10] KNAUTH P. Inorganic solid Li ion conductors:An overview [J]. Solid State Ionics,2009,180(14/15/16):911-916. [11] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Mater.,2013,61(3):759-770. [12] GOODENOUGH J B,HONG H Y P,KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater. Res. Bull.,1976,11(2):203-220. [13] ALPEN U V,RABENAU A,TALAT G H. Ionic conductivity in Li3N single crystals [J]. Appl. Phys. Lett.,1977,30(12):621-623. [14] DISSANAYAKE M A K L,WEST A R. Structure and conductivity of an Li4SiO4-Li2SO4 solid solution phase[J]. J. Mater. Chem.,1991,1(6):1023-1025. [15] THANGADURAI V,KAACK H,WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta)[J]. J. Am. Ceram. Soc.,2003,86(3):437-440. [16] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nat. Mater.,2011,10(9):682-686. [17] SHIRAKI S,OKI H,TAKAGI Y,et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films[J]. J. Power Sources,2014,267:881-887. [18] OHTA S,SEKI J,YAGI Y,et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery [J]. J. Power Sources,2014,265:40-44. [19] KAWAI H,KUWANO J. Lithium ion conductivity of a-site deficient perovskite solid solution La0.67-xLi3xTiO3[J]. J. Electrochem. Soc.,1994,141(7):L78-L79. [20] TERANISHI T,KOUCHI A,HAYASHI H,et al. Dependence of the conductivity of polycrystalline Li0.33BaxLa0.56–2/3xTiO3 on Ba loading[J]. Solid State Ionics,2014,263(1):33-38. [21] MA C,CHEN K,LIANG C,et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy Environ. Sci.,2014,7(5):1638-1642. [22] KINGERY W D. Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena:II, Solute segregation, grain-boundary diffusion, and general discussion[J]. J. Am. Ceram. Soc.,1974,57(2):74-83. [23] FRENKEL J. Kinetic theory of liquids[M]. New York:Oxford University Press,1946. [24] AWAKA J,TAKASHIMA A,KATAOKA K,et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chemistry Letters,2011,40(1):60-62. [25] ZEIER W G,ZHOU S,LOPEZBERMUDEZ B,et al. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12[J]. ACS Appl. Mater. Interfaces,2014,6(14):10900-10907. [26] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. J. Power Sources,2015,300:24-28. [27] LI Y,WANG Z,CAO Y,et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochimica Acta,2015,180(20):37-42. [28] WANG D,ZHONG G,PANG W K,et al. Towards understanding the lithium transport mechanism in garnet-type solid electrolytes:Li+ ions exchanges and their mobility at octahedral/tetrahedral sites[J]. Chem. Mater.,2015,27(19):6650-6659. [29] TONG X,THANGADURAI V,WACHSMAN E D. Highly conductive Li garnets by a multielement doping strategy[J]. Inorg. Chem.,2015,54(7):3600-3607. [30] JANANI N,RAMAKUMAR S,KANNAN S,et al. Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12[J]. J. Am. Ceram. Soc.,2015,98(7):2039-2046. [31] DAVID I N,THOMPSON T,WOLFENSTINE J,et al. Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12[J]. J. Am. Ceram. Soc.,2015,98(4):1209-1214. [32] WANG D,ZHONG G,DOLOTKO O,et al. The synergistic effects of Al and Te on the structure and Li+-mobility of the garnet-type solid electrolytes[J]. J. Mater. Chem. A,2014,2(47):20271-20279. [33] RANGASAMY E,SAHU G,KEUM J K,et al. A high conductivity oxide-sulfide composite lithium superionic conductor[J]. J. Mater. Chem. A,2014,2(12):4111-4116. [34] REN Y,DENG H,CHEN R,et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. J. Eur. Ceram. Soc.,2015,35(2):561-572. [35] RAMAKUMAR S,JANANI N,MURUGAN R. Influence of lithium concentration on the structure and Li+ transport properties of cubic phase lithium garnets[J]. Dalton Trans.,2014,44(2):539-552. [36] LI Y,WANG Z,LI C,et al. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. J. Power Sources,2014,248:642-646. [37] JANANI N,DEVIANNAPOORANI C,DHIVYA L,et al. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet[J]. RSC Adv.,2014,4(93):51228-51238. [38] HUANG M,SHOJI M,SHEN Y,et al. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M=Ta, Nb) solid electrolytes[J]. J. Power Sources,2014,261:206-211. [39] DHIVYA L,MURUGAN R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Appl. Mater. Interfaces,2014,6(20):17606-17615. [40] BERNUY C,MANALASTAS W,LOPEZ J M,et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chem. Mater.,2014,26(12):3610-3617. [41] BAEK S W,LEE J M,KIM T Y,et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries[J]. J. Power Sources,2014,249:197-206. [42] TADANAGA K,TAKANO R,ICHINOSE T,et al. Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites[J]. Electrochem. Commun.,2013,33:51-54. [43] SAKAMOTO J,RANGASAMY E,KIM H,et al. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12[J]. Nanotechnology,2013,24(42):3532-3540. [44] RASKOVALOV A A,IL'INA E A,ANTONOV B D. Structure and transport properties of Li7La3Zr2-0.75xAlxO12 superionic solid electrolytes[J]. J. Power Sources,2013,238:48-52. [45] RANGASAMY E,WOLFENSTINE J,ALLEN J,et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte[J]. J. Power Sources,2013,230:261-266. [46] SHINAWI H E,JANEK J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium[J]. J. Power Sources,2013,225:13-19. [47] DEVIANNAPOORANI C,DHIVYA L,RAMAKUMAR S,et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. J. Power Sources,2013,240:18-25. [48] WOLFENSTINE J,RATCHFORD J,RANGASAMY E,et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12[J]. Mater. Chem. Phys.,2012,134(2/3):571-575. [49] WANG Y,LAI W. High ionic conductivity lithium garnet oxides of Li7−xLa3Zr2−xTaxO12 compositions[J]. Electrochemical and Solid-State Letter,2012,15(5):A68-A71. [50] LI Y,HAN J T,WANG C A,et al. Optimizing Li+ conductivity in a garnet framework[J]. J. Mater. Chem.,2012,22(30):15357-15361. [51] HUANG M,DUMON A,NAN C W. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12[J]. Electrochem. Commun.,2012,21:62-64. [52] GUPTA A,MURUGAN R,PARANTHAMAN M P,et al. Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12[J]. J. Power Sources,2012,209:184-188. [53] ALLEN J L,WOLFENSTINE J,RANGASAMY E,et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12[J]. J. Power Sources,2012,206:315-319. [54] OHTA S,KOBAYASHI T,ASAOKA T. High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X=0-2)[J]. J. Power Sources,2011,196:3342-3345. [55] MURUGAN R,RAMAKUMAR S,JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochem. Commun.,2011,13(12):1373-1375. [56] LI Y,WANG C A,XIE H,et al. High lithium ion conduction in garnet-type Li6La3ZrTaO12[J]. Electrochem. Commun.,2011,13(12):1289-1292. [57] KUMAZAKI S,IRIYAMA Y,KIM K H,et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si[J]. Electrochem. Commun.,2011,13(5):509-512. [58] JIN Y,MCGINN P J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method[J]. J. Power Sources,2011,196:8683-8687. [59] WOLFENSTINE J,SAKAMOTO J,ALLEN J L. Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12[J]. J. Mater. Sci.,2012,47(10):4428-4431. [60] TENHAEFF W E,RANGASAMY E,WANG Y,et al. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem,2014,1(2):375-378. [61] GUO X. Peculiar size effect in nanocrystalline BaTiO3[J]. Acta Mater.,2013,61(5):1748-1756. [62] GUO X,ZHANG Z. Grain size dependent grain boundary defect structure:Case of doped zirconia[J]. Acta Mater.,2003,51(9):2539-2547. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 熊良涛, 王继芬, 谢华清, 章学来. 空位缺陷对单层石墨烯导热特性影响的分子动力学[J]. 储能科学与技术, 2022, 11(5): 1322-1330. |
[4] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[5] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[6] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[7] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[8] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[9] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[10] | 高永晟, 陈光海, 王欣然, 白莹, 吴川. 钠离子电池电解质安全性:改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317. |
[11] | 高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
[12] | 高舒, 周敏, 韩静, 过聪, 谭媛, 蒋凯, 王康丽. 钠离子电池聚合物电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1300-1308. |
[13] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[14] | 马梦莹, 潘慧霖, 胡勇胜. 非水系钠离子电池的电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1234-1250. |
[15] | 周洪, 魏凤, 吴永庆. 基于专利的无机固态锂电池电解质技术发展研究[J]. 储能科学与技术, 2020, 9(3): 1001-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||