储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1284-1299.doi: 10.19799/j.cnki.2095-4239.2020.0119
杨菁1(), 刘高瞻1,2, 沈麟1,2, 姚霞银1,2()
收稿日期:
2020-03-25
修回日期:
2020-04-02
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
姚霞银
E-mail:yangjing@nimte.ac.cn;yaoxy@nimte.ac.cn
作者简介:
杨菁(1989—),男,博士,助理研究员,研究方向为NASICON结构固体电解质材料及全固态电池,E-mail:基金资助:
Jing YANG1(), Gaozhan LIU1,2, Lin SHEN1,2, Xiayin YAO1,2()
Received:
2020-03-25
Revised:
2020-04-02
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xiayin YAO
E-mail:yangjing@nimte.ac.cn;yaoxy@nimte.ac.cn
摘要:
钠离子电池由于原料成本低廉、来源广泛,被视作锂离子电池最具竞争力的替代体系之一。然而,传统钠离子电池中使用易燃的有机电解液存在漏液、燃烧乃至爆炸的安全隐患。NASICON结构固体电解质材料具有安全性能高、稳定性良好、成本低廉、环境友好等优点,可代替有机电解液与隔膜从而实现固态钠电池,是能源存储领域的研究热点。然而其电导率仍需进一步提升、与电极间界面阻抗大的问题,限制了其进一步应用。针对目前NASICON结构固体电解质存在的问题,本文首先介绍了其晶体结构和钠离子传输机理,分析了影响晶粒电导率和晶界电导率的主要因素,分别总结了提高晶粒电导率和晶界电导率的改性方法,指出合适离子取代、提高物相纯度和致密度是电导率提高的有效途径。此外,本文阐述了NASICON结构固体电解质材料在固态钠电池应用中存在的界面问题,总结分析了现有界面改性的策略,指出对新型修饰材料和复合材料的探索有望进一步改善固体电解质与电极的界面特性。最后,对NASICON结构固体电解质材料的研究进行了展望。
中图分类号:
杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299.
Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299.
1 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
2 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 282-292. | |
3 | VIGNAROOBAN K, KUSHAGRA R, ELANGO A, et al. Current trends and future challenges of electrolytes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2829-2846. |
4 | PALOMARES V, CASAS-CABANAS M, CASTILLO-MART NEZ E, et al. Update on Na-based battery materials: A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337. |
5 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Yuesheng, RONG Xiaohui, XU Shuyin, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
6 | 朱娜, 吴锋, 吴川, 等. 钠离子电池的电解质[J]. 储能科学与技术, 2016, 5(3): 285-291. |
ZHU Na, WU Feng, WU Chuan, et al. Recent advances of electrolytes for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 285-291. | |
7 | 刘丽露, 戚兴国, 邵元骏, 等. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
LIU Lilu, QI Xingguo, SHAO Yuanjun, et al. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. | |
8 | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
9 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
10 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. |
11 | MAZZA D. Modeling ionic conductivity in Nasicon structures[J]. Journal of Solid State Chemistry, 2001, 156(1): 154-160. |
12 | ANANTHARAMULU N, RAO K K, RAMBABU G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. |
13 | JIAN Z, HU Y S, JI X, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925-1601940. |
14 | BUI K M, DINH V A, OKADA S, et al. Na-ion diffusion in a NASICON-type solid electrolyte: A density functional study[J]. Physical Chemistry Chemical Physics, 2016, 18(39): 27226-27231. |
15 | ZHANG Z, ZOU Z, KAUP K, et al. Correlated migration invokes higher Na+-ion conductivity in NASICON-type solid electrolytes[J]. Advanced Energy Materials, 2019, 9(42): 1902373-1902386. |
16 | ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
17 | JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. Journal of the American Ceramic Society, 2015, 98(9): 2902-2907. |
18 | NAQASH S, TIETZ F, YAZHENSKIKH E, et al. Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12+xNa2O ceramics[J]. Solid State Ionics, 2019, 336: 57-66. |
19 | HE X, ZHU Y, MO Y. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8(1): 15893-15899. |
20 | 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题(VI)—离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6): 620-635. |
ZHENG Hao, GAO Jian, WANG Shaofei, et al. Fundamental scientific aspects of lithium batteries (VI)—Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6): 620-635. | |
21 | GUIN M, TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. Journal of Power Sources, 2015, 273: 1056-1064. |
22 | HULL S. Superionics: Crystal structures and conduction processes[J]. Reports on Progress in Physics, 2004, 67(7): 1233-1314. |
23 | HOU W, GUO X, SHEN X, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
24 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)—全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. |
ZHANG Shu, WANG Shaofei, LING Shigang, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. | |
25 | LUNGHAMMER S, MA Q, RETTENWANDER D, et al. Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON)[J]. Chemical Physics Letters, 2018, 701: 147-150. |
26 | LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2: 1-24. |
27 | MIYAJIMA Y, SAITO Y, MATSUOKA M, et al. Ionic conductivity of NASICON-type Na1+xMxZr2-xP3O12 (M: Yb, Er, Dy)[J]. Solid State Ionics, 1996, 84(1): 61-64. |
28 | AONO H, SUGINOTO E. Ionic conductivity and sinterability of NASICON-type ceramics: The systems NaM2(PO4)3+yNa2O (M=Ge, Ti, Hf, and Zr)[J]. Journal of the American Ceramic Society, 1996, 79(10): 2786-2788. |
29 | ABELLO L, CHHOR K, BARJ M, et al. Heat capacity and Na+ ion disorder in Nasicon-type solid electrolytes Na3M2P3O12 (M2= Fe2, Cr2, ZrMg) in the temperature range 10 to 300 K[J]. Journal of Materials Science, 1989, 24(9): 3380-3386. |
30 | SAITO Y, ADO K, ASAI T, et al. Ionic conductivity of NASICON-type conductors Na1.5M0.5Zr1.5(PO4)3 (M: Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+)[J]. Solid State Ionics, 1992, 58(3): 327-331. |
31 | MALDONADO-MANSO P, ARANDA M A G, BRUQUE S, et al. Nominal vs. actual stoichiometries in Al-doped NASICONs: A study of the Na1.4Al0.4M1.6(PO4)3 (M=Ge, Sn, Ti, Hf, Zr) family[J]. Solid State Ionics, 2005, 176(17/18): 1613-1625. |
32 | CHAKIR M, JAZOULI A EL, DE WAAL D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates[J]. Journal of Solid State Chemistry, 2006, 179(6): 1883-1891. |
33 | LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Advanced Energy Materials, 2019, 9(28): 1901205-1901213. |
34 | SAMIEE M, RADHAKRISHNAN B, RICE Z, et al. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J]. Journal of Power Sources, 2017, 347: 229-237. |
35 | MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. |
36 | MA Q, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776. |
37 | GUIN M, TIETZ F, GUILLON O. New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3-xO12[J]. Solid State Ionics, 2016, 293: 18-26. |
38 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6: 32330-32339. |
39 | JOLLEY A G, COHN G, HITZ G T, et al. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12[J]. Ionics, 2015, 21(11): 3031-3038. |
40 | RUAN Y, SONG S, LIU J, et al. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J]. Ceramics International, 2017, 43(10): 7810-7815. |
41 | VOGEL E M, CAVA R J, RIETMAN E. Na+ ion conductivity and crystallographic cell characterization in the Hf-Nasicon system Na1+xHf2SixP3-xO12[J]. Solid State Ionics, 1984, 14(1): 1-6. |
42 | BOGUSZ W, KROK F, JAKUBOWSKI W. Influence of doping on some physical properties of NASICON[J]. Solid State Ionics, 1983, 9/10: 803-807. |
43 | CHEN D, LUO F, ZHOU W, et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. Journal of Alloys and Compounds, 2018, 757: 348-355. |
44 | WANG W, LIU X. Study on sodium fast ion conductors in the Na1+3xAlxHf2-xSi2xP3-2xO12 system[J]. Solid State Ionics, 1996, 89(1): 165-168. |
45 | ALLU A R, BALAJI S, ILLATH K, et al. Structural elucidation of NASICON (Na3Al2P3O12) based glass electrolyte materials: Effective influence of boron and gallium[J]. RSC Advances, 2018, 8(26): 14422-14433. |
46 | WINAND J M, RULMONT A, TARTE P. Ionic conductivity of the Na1+xMxIIIZr2-x(PO4)3 systems (M=Al, Ga, Cr, Fe, Sc, In, Y, Yb)[J]. Journal of Materials Science, 1990, 25(9): 4008-4013. |
47 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
48 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B, et al. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors[J]. Journal of the European Ceramic Society, 2001, 21(6): 737-743. |
49 | FUENTES R O, FIGUEIREDO F M, SOARES M R, et al. Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors[J]. Journal of the European Ceramic Society, 2005, 25(4): 455-462. |
50 | SUMAN G, RAO C S, KUMAR O P, et al. High Na-ion conducting Na1+x[SnxGe2-x(PO4)3] glass-ceramic electrolytes: Structural and electrochemical impedance studies[J]. Journal of the American Ceramic Society, 2018, 101(1): 167-177. |
51 | ESSOUMHI A, FAVOTTO C, MANSORI M, et al. Electrical conductivity and Hf4+ ion substitution range in NaSICON system[J]. Solid State Sciences, 2007, 9(3/4): 240-246. |
52 | BENNOUNA L, ARSALANE S, BROCHU R, et al. Spécificités des ions NbIV et MoIV dans les monophosphates de type Nasicon[J]. Journal of Solid State Chemistry, 1995, 114(1): 224-229. |
53 | YADAV P, BHATNAGAR M C. Preparation, structure and conductivity of Sn modified NASICON material[J]. Journal of Electroceramics, 2013, 30(3): 145-151. |
54 | TAKAHASHI T, KUWABARA K, SHIBATA M. Solid-state ionics-conductivities of Na+ ion conductors based on NASICON[J]. Solid State Ionics, 1980, 1(3): 163-175. |
55 | NIETO-MU OZ A M, ORTIZ-MOSQUERA J F, RODRIGUES A C M. Novel sodium superionic conductor of the Na1+yTi2SiyP3-yO12 series for application as solid electrolyte[J]. Electrochimica Acta, 2019, 319: 922-932. |
56 | MAZZA D, LUCCO-BORLERA M, RONCHETTI S. Powder diffraction study of arsenic-substituted nasicon structures MeZr2As3-xPxO12 (Me=Na+, K+)[J]. Powder Diffraction, 1998, 13(4): 227-231. |
57 | YANG J, WAN H, ZHANG Z, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J]. Rare Metals, 2018, 37(6): 480-487. |
58 | LENG H, HUANG J, NIE J, et al. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J]. Journal of Power Sources, 2018, 391: 170-179. |
59 | KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322. |
60 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
HUANG Zhen, YANG Jing, CHEN Xiaotian, et al. Research progress of inorganic solid electrolyte in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
61 | YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
62 | PARK H, JUNG K, NEZAFATI M, et al. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27814-27824. |
63 | 章志珍, 施思齐, 胡勇胜, 等. 溶胶凝胶法制备钠离子固态电解质Na3Zr2Si2PO12及其电导性能研究[J]. 无机材料学报, 2013(11): 1255-1260. |
ZHANG Zhizhen, SHI Siqi, HU Yongsheng, et al. Sol-gel synthesis and conductivity properties of sodium ion solid state electrolytes Na3Zr2Si2PO12[J]. Journal of Inorganic Materials, 2013(11): 1255-1260. | |
64 | BELL N S, EDNEY C, WHEELER J S, et al. The influences of excess sodium on low-temperature NaSICON synthesis[J]. Journal of the American Ceramic Society, 2014, 97(12): 3744-3748. |
65 | NAQASH S, MA Q, TIETZ F, et al. Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction[J]. Solid State Ionics, 2017, 302: 83-91. |
66 | LIU S, ZHOU C, WANG Y, et al. Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3502-3509. |
67 | SILVA P D, BRAM M, LAPTEV A M, et al. Sintering of a sodium-based NASICON electrolyte: A comparative study between cold, field assisted and conventional sintering methods[J]. Journal of the European Ceramic Society, 2019, 39(8): 2697-2702. |
68 | 谢章龙, 朱冬梅, 谢乔, 等. 热压烧结制备NASICON陶瓷的性能[J]. 稀有金属材料与工程, 2007, 36(S1): 494-497. |
XIE Zhanglong, ZHU Dongmei, XIE Qiao, et al. Properties of hot-press sintered NASICON ceramics[J]. Rare Metal Materials and Engineering, 2007, 36(S1): 494-497. | |
69 | SCH F O, WEIBEL A, LLEWELLYN P L, et al. Preparation and electrical properties of dense ceramics with NASICON composition sintered at reduced temperatures[J]. Journal of Electroceramics, 2004, 13(1): 817-823. |
70 | LEE J S, CHANG C M, LEE Y I L, et al. Spark plasma sintering (SPS) of NASICON ceramics[J]. Journal of the American Ceramic Society, 2004, 87(2): 305-307. |
71 | WANG H, OKUBO K, INADA M, et al. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering[J]. Solid State Ionics, 2018, 322: 54-60. |
72 | NIAZMAND M, KHAKPOUR Z, MORTAZAVI A. Electrochemical properties of nanostructure NASICON synthesized by chemical routes: A comparison between coprecipitation and sol-gel[J]. Journal of Alloys and Compounds, 2019, 798: 311-319. |
73 | ZHANG Q, WEN Z, LIU Y, et al. Na+ ion conductors of glass-ceramics in the system Na1+xAlxGe2-xP3O12(0.3 ≤ x ≤ 1.0)[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 494-499. |
74 | ZHU Y S, LI L L, LI C Y, et al. Na1+xAlxGe2-xP3O12(x=0.5) glass-ceramic as a solid ionic conductor for sodium ion[J]. Solid State Ionics, 2016, 289: 113-117. |
75 | LI C, JIANG S, LV J W, et al. Ionic conductivities of Na-Ge-P glass ceramics as solid electrolyte[J]. Journal of Alloys and Compounds, 2015, 633: 246-249. |
76 | HONMA T, OKAMOTO M, TOGASHI T, et al. Electrical conductivity of Na2O-Nb2O5-P2O5 glass and fabrication of glass-ceramic composites with NASICON type Na3Zr2Si2PO12[J]. Solid State Ionics, 2015, 269: 19-23. |
77 | OKUBO K, WANG H, HAYASHI K, et al. A dense NASICON sheet prepared by tape-casting and low temperature sintering[J]. Electrochimica Acta, 2018, 278: 176-181. |
78 | NOI K, SUZUKI K, TANIBATA N, et al. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive[J]. Journal of the American Ceramic Society, 2017, 101(3): 1255-1265. |
79 | OH J A S, HE L, PLEWA A, et al. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: Effect of liquid phase sintering[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40125-40133. |
80 | SUZUKI K, NOI K, HAYASHI A, et al. Low temperature sintering of Na1+xZr2SixP3-xO12 by the addition of Na3BO3[J]. Scripta Materialia, 2018, 145: 67-70. |
81 | SHAO Y, ZHONG G, LU Y, et al. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Materials, 2019, 23: 514-521. |
82 | CAO X G, ZHANG X H, TAO T, et al. Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J]. Ceramics International, 2019, 46(6): 8405-8412. |
83 | CHEN D, LUO F, GAO L, et al. Influence of indium-tin oxide additive on the sintering process and conductivity of Na3Zr2Si2PO12 solid electrolyte[J]. Journal of Electronic Materials, 2017, 46(11): 6367-6372. |
84 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196-1601207. |
85 | JALALIAN-KHAKSHOUR A, PHILLIPS C O, JACKSON L, et al. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity[J]. Journal of Materials Science, 2020, 55(6): 2291-2302. |
86 | LEE S M, LEE S T, LEE D H, et al. Effect of particle size on the density and ionic conductivity of Na3Zr2Si2PO12 NASICON[J]. Journal of Ceramic Processing Research, 2015, 16(1): 49-53. |
87 | GAO H, XIN S, XUE L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem., 2018, 4(4): 833-844. |
88 | ZHOU W, LI Y, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. |
89 | NOGUCHI Y, KOBAYASHI E, PLASHNITSA L S, et al. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds[J]. Electrochimica Acta, 2013, 101: 59-65. |
90 | LIU L, QI X, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636. |
91 | GAO H, XUE L, XIN S, et al. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angewandte Chemie International Edition, 2017, 56(20): 5541-5545. |
92 | NOI K, NAGATA Y, HAKARI T, et al. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614. |
93 | DE LA TORRE-GAMARRA C, APPETECCHI G B, ULISSI U, et al. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?[J]. Journal of Power Sources, 2018, 383: 157-163. |
94 | KIM J K, LIM Y J, KIM H, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy & Environmental Science, 2015, 8(12): 3589-3596. |
95 | ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. |
96 | ZHANG Z, XU K, RONG X, et al. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries[J]. Journal of Power Sources, 2017, 372: 270-275. |
97 | NIU W, CHEN L, LIU Y, et al. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J]. Chemical Engineering Journal, 2020, 384: 123233-123241. |
98 | KOBAYASHI T, CHEN F, SEZNEC V, et al. HBO2 as an adhesive agent for the multi-step fabrication of all-solid-state sodium batteries[J]. Journal of Power Sources, 2020, 450: 227597-227602. |
99 | LAL RE F, LERICHE J B, COURTY M, et al. An all-solid state NASICON sodium battery operating at 200 ℃[J]. Journal of Power Sources, 2014, 247: 975-980. |
100 | KEHNE P, GUHL C, MA Q, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance[J]. Journal of Power Sources, 2019, 409: 86-93. |
101 | GUHL C, KEHNE P, MA Q, et al. Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates[J]. Electrochimica Acta, 2018, 268: 226-233. |
102 | LAN T, TSAI C L, TIETZ F, et al. Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials[J]. Nano Energy, 2019, 65: 104040-104048. |
103 | ZHANG Y, WANG C, PASTEL G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018, 8(18): 1800635-1800644. |
104 | FU H, YIN Q, HUANG Y, et al. Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J]. ACS Materials Letters, 2020, 2: 127-132. |
105 | WANG C, XIE H, ZHANG L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries[J]. Advanced Energy Materials, 2017, 8(6): 1701963-1701970. |
106 | YU X, MANTHIRAM A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte[J]. Matter., 2019, 1(2): 439-451. |
107 | HASHIMOTO T, HAYASHI K. Aqueous and nonaqueous sodium-air cells with nanoporous gold cathode[J]. Electrochimica Acta, 2015, 182: 809-814. |
108 | LIANG F, QIU X, ZHANG Q, et al. A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety[J]. Nano Energy, 2018, 49: 574-579. |
109 | GUIN M, INDRIS S, KAUS M, et al. Stability of NASICON materials against water and CO2 uptake[J]. Solid State Ionics, 2017, 302: 102-106. |
110 | KIM Y, KIM H, PARK S, et al. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries[J]. Electrochimica Acta, 2016, 191: 1-7. |
111 | HWANG S M, J-S PARK, KIM Y, et al. Rechargeable seawater batteries—From concept to applications[J]. Advanced Materials, 2019, 31(20): 1804936-1804949. |
112 | SENTHILKUMAR S T, ABIRAMI M, KIM J, et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications[J]. Journal of Power Sources, 2017, 341: 404-410. |
113 | YAMAZOE N. Toward innovations of gas sensor technology[J]. Sensors and Actuators B: Chemical, 2005, 108(1/2): 2-14. |
114 | JASI SKI P, NOWAKOWSKI A. Simultaneous detection of sulphur dioxide and nitrogen dioxide by Nasicon sensor with platinum electrodes[J]. Ionics, 2000, 6(3): 230-234. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[3] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[4] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[5] | 吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1472-1488. |
[6] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[7] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[8] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
[9] | 姜鹏峰, 石元盛, 李康万, 韩百川, 颜立全, 孙洋, 卢侠. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. |
[10] | 杨建锋, 李林艳, 吴振岳, 王开学. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. |
[11] | 段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
[12] | 刘丽露1,戚兴国1,邵元骏1,潘 都1,2,白 莹2,胡勇胜1,李 泓1,陈立泉1. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
[13] | 石 凯,安德成,贺艳兵,李宝华,康飞宇. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
[14] | 杜奥冰,柴敬超,张建军,刘志宏,崔光磊. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
[15] | 吴剑芳,郭 新. 固态锂离子传导氧化物中的点缺陷[J]. 储能科学与技术, 2016, 5(5): 745-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||