储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1370-1382.doi: 10.19799/j.cnki.2095-4239.2020.0180

• 钠离子电池技术专刊 • 上一篇    下一篇

基于无机钠离子导体的固态钠电池研究进展

彭林峰1,2(), 贾欢欢1,3, 丁庆4, 赵宇明4, 谢佳1(), 程时杰1   

  1. 1.华中科技大学电气与电子工程学院
    2.华中科技大学物理学院
    3.华中科技大学材料科学与工程学院,湖北 武汉 430000
    4.深圳供电局有限公司,广东 深圳 518000
  • 收稿日期:2020-05-17 修回日期:2020-06-28 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 谢佳 E-mail:511574845@qq.com;xiejia@hust.edu.cn
  • 作者简介:彭林峰(1989—),男,博士研究生,主要研究方向为固态电池与固态电解质,E-mail:511574845@qq.com
  • 基金资助:
    国家重点研发计划(2018YFB0905300);深圳供电局有限公司“面向电力储能的磷酸铁锂电池系统经济性分析及关键技术研究”项目(090000KK52190063);国家自然科学基金(U1966214)

Research progress of solid-state sodium batteries using inorganic sodium ion conductors

Linfeng PENG1,2(), Huanhuan JIA1,3, Qing DING4, Yuming ZHAO4, Jia XIE1(), Shijie CHENG1   

  1. 1.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology
    2.School of Physics, Huazhong University of Science and Technology
    3.School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
    4.Shenzhen Power Supply Bureau Co. Ltd. , Shenzhen 518000, Guangdong, China
  • Received:2020-05-17 Revised:2020-06-28 Online:2020-09-05 Published:2020-09-08
  • Contact: Jia XIE E-mail:511574845@qq.com;xiejia@hust.edu.cn

摘要:

锂离子电池的迅速发展导致锂价格上涨,另外,锂资源地壳储量低且分布不均,引起了人们对锂离子电池替代品的研究。钠资源丰富且与锂有相似的化学性质,使得钠离子电池受到广泛关注。基于不可燃无机固态电解质的固态钠电池,兼具高安全和低成本的优势,成为规模化储能领域非常有前景的储能器件。经过不懈努力,适用于固态钠电池的电解质已经被陆续开发,包括常见的β-Al2O3、NASICON型、硫化物型固态电解质以及新型富钠反钙钛矿和复合氢化物等。这些钠离子固态电解质经过合成条件优化、元素取代或置换、结构调控等手段,室温离子电导率可达10-3 S/cm以上,已经完全可满足实用需求。但是,固态钠电池的实际应用依然受到较大挑战,主要是固态电池中电解质与正负极材料间的化学、电化学相容性差,以及固-固界面接触问题。本文通过梳理近些年与固态钠电池相关的研究,总结了不同类型固态电解质应用到固态钠电池过程中遇到的机遇和挑战,以及相应解决策略,同时讨论了固态钠电池未来可能的发展方向和趋势。总的来说,主要通过引入离子液体或聚合物、多孔结构设计、电解质包覆,以及复合正极设计等方式,提升固态钠电池电化学稳定性。

关键词: 固态钠电池, 固态电解质, 离子电导率, 电化学稳定性, 固-固界面

Abstract:

The surging market of lithium-ion batteries has pushed up the price of lithium. Meanwhile, the lithium resources in the Earth's crust are scarce and unevenly distributed. Therefore, it is highly desirable to pursue alternatives to lithium-ion batteries. Sodium-ion batteries have attracted significant attention due to the abundant sodium resources and because sodium has similar chemical properties to lithium. Moreover, solid-state sodium batteries based on non-combustible inorganic solid electrolytes, which combine the advantages of high safety and low cost, are becoming promising energy storage devices in the field of large-scale energy storage. With considerable effort, electrolytes suitable for solid-state sodium batteries have been developed, including common β-Al2O3, NASICON-type, and sulfide solid electrolytes, as well as novel sodium-rich anti-perovskite and composite hydrides. The ionic conductivity of these solid electrolytes at ambient temperature can be enhanced to over 10-3 S/cm by optimizing the synthetic conditions, element substitution, and structural manipulation approaches, making them fully capable of meeting practical requirements. However, the practical application of solid-state sodium batteries still faces challenges from the poor chemical or electrochemical compatibility between the electrolyte and cathode/anode materials and an inferior solid-solid interfacial contact. Here we summarize the opportunities and challenges encountered in the application of different types of solid electrolytes for solid-state sodium batteries and their corresponding solutions, then we discuss the possible development directions and trends of solid-state sodium batteries in the future.

Key words: solid-state sodium battery, solid electrolytes, ionic conductivity, electrochemical stability, solid-solid interface

中图分类号: