1 |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
|
2 |
WU F, ZHOU J, LUO R, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode[J]. Energy Storage Materials, 2019, 22: 376-383.
|
3 |
WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): doi: 10.1002/adma.201702093.
|
4 |
KLEIN F, JACHE B, BHIDE A, et al. Conversion reactions for sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(38): 15876-15887.
|
5 |
ZHANG N, HAN X, LIU Y, et al. 3D porous γ-Fe2O3@C Nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): doi:10.1002/aenm.20 1401123.
|
6 |
LIU H, CAO F, ZHENG H, et al. In situ observation of the sodiation process in CuO nanowires[J]. Chemical Communications, 2015, 51(52): 10443-10446.
|
7 |
LU Y, ZHANG N, ZHAO Q, et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries[J]. Nanoscale, 2015, 7(6): 2770-2776.
|
8 |
XU M, XIA Q, YUE J, et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries[J]. Advanced Functoinal Materials, 2019, 29: doi: 10.1002/adfm.2018073776.
|
9 |
GU M, KUSHIMA A, SHAO Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Letters, 2013, 13(11): 5203-5211.
|
10 |
WANG M, WANG X, YAO Z, et al. SnO2 Nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24198-24204.
|
11 |
XU H, QIN L, WANG Z, et al. Toward advanced sodium-ion batteries a wheel-inspired yolk-shell design for large-volume-change anode materials[J]. Journal of Materials Chemistry A, 2018, 6: 13153-13163.
|
12 |
LIANG J, YUAN C, LI H, et al. Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries[J]. Nano-Micro Letters, 2018, 10(2): doi: 10.1007/S40820-017-0172-2.
|
13 |
KIM J, PARK S, PARK J, et al. Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(6): 2636-2645.
|
14 |
HU Z, WANG L, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 126(47): 13008-13012.
|
15 |
PAN Q, ZHANG Q, ZHENG F, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries[J]. ACS Nano, 2018, 12(12): 12578-12586.
|
16 |
WALTER M, ZUEND T, KOVALENKO M. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials[J]. Nanoscale, 2015, 7(20): 9158-9163.
|
17 |
LIU Y, FANG Y, ZHAO Z, et al. A ternary Fe1-xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials, 2019, 9(9): doi: 10.1002/aenm.201803052.
|
18 |
JIN A, KIM M, LEE K, et al. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes[J]. Nano Research, 2019, 12(3): 695-700.
|
19 |
CHANG X, MA Y, YANG M, et al. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Materials, 2019, 23: 358-366.
|
20 |
SHUANG W, HUANG H, KONG L, et al. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes[J]. Nano Energy, 2019, 62: 154-163.
|
21 |
QI H, WANG L, ZUO T, et al. Hollow structure VS2@reduced graphene oxide (RGO) architecture for enhanced sodium-ion battery performance[J]. Chemelectrochem, 2020, 7(1): 78-85.
|
22 |
ZHOU J, WANG L, YANG M, et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions[J]. Advanced Materials, 2017, 29(35): doi: 10.1002/adma.20 1702061.
|
23 |
YANG S, PARK S, KANG Y. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes[J]. Chemical Engineering Journal, 2019, 370: 1008-1018.
|
24 |
ZHANG Z, YANG X, FU Y, et al. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 296: 2-9.
|
25 |
WANG H, LAN X, JIANG D, et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 283: 187-194.
|
26 |
TANG Y, ZHAO Z, WANG Y, et al. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32324-32332.
|
27 |
KO Y, CHOI S, PARK S, et al. Hierarchical MoSe2 yolk-shell microspheres with superior Na-ion storage properties[J]. Nanoscale, 2014, 6(18): doi: 10.1039/C4NR02538E.
|
28 |
CHOI S, KANG Y. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage[J]. Nanoscale, 2016, 8(7): 4209-4216.
|
29 |
ZHANG Z, FU Y, YANG X, et al. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance[J]. ChemNanoMat, 2015, 1(6): 409-414.
|
30 |
YANG X, ZHANG Z, FU Y, et al. Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage[J]. Nanoscale, 2015, 7(22): 10198-10203.
|
31 |
XIE D, TANG W, WANG Y, et al. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage[J]. Nano Research, 2016, 9(6): 1618-1629.
|
32 |
TANG Y, ZHAO Z, WANG Y, et al. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32324-32332.
|
33 |
ZHANG K, HU Z, LIU X, et al. FeSe2 microspheres as a high-performance anode material for Na-ion batteries[J]. Advanced Materials, 2015, 27(21): 3305-3309.
|
34 |
XU X, LIU J, LIU J, et al. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries[J]. Advanced Functional Materials, 2018, 28(16): doi: 10.1002/adfm.201707573.
|
35 |
ZHANG K, PARK M, ZHOU L, et al. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries[J]. Advanced Functional Materials, 2016, 26(37): 6728-6735.
|
36 |
TANG C, WEI X, CAI X, et al. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19626-19632.
|
37 |
ZHOU P, ZHANG M, WANG L, et al. Synthesis and electrochemical performance of ZnSe electrospinning nanofibers as an anode material for lithium ion and sodium ion batteries[J]. Frontiers in Chemistry, 2019, doi: 10.3389/fchem.2019.00569.
doi: 10.3389/fchem.2019.00569
|
38 |
FANG G, WANG Q, ZHOU J, et al. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction[J]. ACS Nano, 2019, 13(5): 5635-5645.
|
39 |
ZHANG S, AI Y, WU S, et al. 3D CoMoSe4 nanosheet arrays converted directly from hydrothermally processed CoMoO4 nanosheet arrays by plasma-assisted selenization process toward excellent anode material in sodium-ion battery[J]. Nanoscale Research Letters, 2019, 14(1): doi: 10.1186/S1167-019-3035-6.
|