储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1327-1339.doi: 10.19799/j.cnki.2095-4239.2020.0123
刘欢庆(), 高旭, 陈军, 尹首懿, 邹康宇, 徐来强, 邹国强, 侯红帅, 纪效波()
收稿日期:
2020-03-27
修回日期:
2020-05-16
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
纪效波
E-mail:hqliuooo@163.com;xji@csu.edu.cn
作者简介:
刘欢庆(1994—),男,博士研究生,研究方向为钠离子电池正极材料,E-mail:基金资助:
Huanqing LIU(), Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI()
Received:
2020-03-27
Revised:
2020-05-16
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xiaobo JI
E-mail:hqliuooo@163.com;xji@csu.edu.cn
摘要:
由于钠资源丰富,钠离子电池(SIB)作为二次离子电池已经受到越来越多地关注,特别是对于大规模储能而言。但是,由于缺乏合适的宿主材料可逆地脱/嵌Na离子,其发展受到了极大限制。层状过渡金属氧化物(NaxMO2,M=Fe、Mn、Ni、Co、Cr及其组合)是一类重要的SIB正极材料。由于其理论容量高、结构简单等优势,因而具有良好的发展前景。与锂的层状过渡金属氧化物不同,钠层状过渡金属氧化物易发生层间滑移以及相变。本文总结了NaxMO2正极材料的结构演变、电化学性能的最新进展。旨在阐明结构演变与电池性能(循环性能、倍率性能和能量效率)的关联。此外,本文还提出了几种策略来缓解这种问题。
中图分类号:
刘欢庆, 高旭, 陈军, 尹首懿, 邹康宇, 徐来强, 邹国强, 侯红帅, 纪效波. 钠离子电池层状氧化物正极:层间滑移,相变与性能[J]. 储能科学与技术, 2020, 9(5): 1327-1339.
Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | MAITRA U, HOUSE R A, SOMERVILLE J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295. |
3 | WANG S, SUN C, WANG N, et al. Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: Status, challenges and countermeasures[J]. Journal of Materials Chemistry A, 2019, 7(17): 10138-10158. |
4 | GUO S, LIU P, YU H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 127(20): 1-7. |
5 | YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 2018, 3(7): 600-605. |
6 | LIU H, ZOU J, DING Y, et al. Flute-like Fe2O3 nanorods with modulating porosity for high performance anode materials in lithium ion batteries[J]. Chemistryselect, 2019, 4(13): 3681-3689. |
7 | YANG L, LIAO H, TIAN Y, et al. Rod‐like Sb2MoO6: Structure evolution and sodium storage for sodium‐ion batteries[J]. Small Methods, 2019, 3(5): doi: 10.1002/Smtd. 201800533. |
8 | GE P, LI S J, SHUAI H L, et al. Ultrafast sodium full batteries derived from X-Fe (X=Co, Ni, Mn) prussian blue analogs[J]. Advanced Materials, 2019, 31(3): 1806092-1806098. |
9 | GAO S, ZHAN X, CHENG Y T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2019, 410: 45-52. |
10 | LIU T, ZHANG Y, JIANG Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. |
11 | LIU Q, HU Z, CHEN M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): 1805381-1805324. |
12 | HUANG M, LI M, NIU C, et al. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries[J]. Advanced Functional Materials, 2019, 29(11): doi: 10.1002/adfm. 201807847. |
13 | NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie-International Edition, 2018, 57(1): 102-120. |
14 | ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. |
15 | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875. |
16 | CHEN M, CHOU S L, DOU S X. Understanding challenges of cathode materials for sodium‐ion batteries using synchrotron‐based X‐ray absorption spectroscopy[J]. Batteries & Supercaps, 2019, 2(10): 842-851. |
17 | SONG W, JI X, PAN C, et al. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14357-14363. |
18 | CHEN M, HUA W, XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-09170-5. |
19 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702619. |
20 | GE P, LI S J, XU L Q, et al. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage[J]. Advanced Energy Materials, 2019, 9(1): 1803035-1803013. |
21 | JO M R, KIM Y, YANG J, et al. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds[J]. Nature Communications, 2019, 10(1): 3385-3389. |
22 | KONG W, GAO R, LI Q, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109. |
23 | ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074. |
24 | FANG Y, CHEN Z, XIAO L, et al. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J]. Small, 2018, 14(9): 1703116-1703119. |
25 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
26 | LI Y M, LU Y X, ZHAO C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151. |
27 | HONG S Y, KIM Y, PARK Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions[J]. Energy & Environmental Science, 2013, 6(7): 2067-2081. |
28 | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137-1703139. |
29 | DIDIER C, GUIGNARD M, SUCHOMEL M R, et al. Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2[J]. Chemistry of Materials, 2016, 28(5): 1462-1471. |
30 | SUN Y, GUO S, ZHOU H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840. |
31 | KOMABA S. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39: 416-422. |
32 | YANG L, LI X, LIU J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(16): 6680-6689. |
33 | DELMAS CC.F, P. H. Structural classification and properties of the layered oxides[J]. Physica99B, 1980: 81-85. |
34 |
XU W, ZOU G, HOU H, et al. Single particle electrochemistry of collision[J]. Small, 2019, doi: 10.1002/smll.201804908.
doi: 10.1002/smll.201804908 |
35 | NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201702397. |
36 | GAO X, JIANG F, YANG Y, et al. Chalcopyrite-derived NaxMO2 (M=Cu, Fe, Mn) cathode: Tuning impurities for self-doping[J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2432-2444. |
37 | DE BOISSE B M, CHENG J H, CARLIER D, et al. O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: Structural evolutions and redox mechanisms upon Na+ (de) intercalation[J]. Journal of Materials Chemistry A, 2015, 3(20): 10976-10989. |
38 | JUNG Y H, CHRISTIANSEN A S, JOHNSEN R E, et al. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation[J]. Advanced Functional Materials, 2015, 25(21): 3227-3237. |
39 | YABUUCHI N, HARA R, KAJIYAMA M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries[J]. Advanced Energy Materials, 2014, 4(13): doi: 10.1002/aenm.201301453. |
40 | BUCHER N, HARTUNG S, FRANKLIN J B, et al. P2-NaxCoyMn1-yO2 (y=0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability[J]. Chemistry of Materials, 2016, 28(7): 2041-2051. |
41 | CLéMENT R J, BRUCE P G, GREY C P. Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162(14): A2589-A2604. |
42 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
43 | KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-6220. |
44 | TALAIE E, DUFFORT V, SMITH H L, et al. Structure of the high voltage phase of layered P2-Na2/3-zMn1/2Fe1/2O2 and the positive effect of Ni substitution on its stability[J]. Energy & Environmental Science, 2015, 8(8): 2512-2523. |
45 | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591. |
46 | CLÉMENT R J, BILLAUD J, ROBERT ARMSTRONG A, et al. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251. |
47 | MA H, SU H, AMINE K, et al. Triphase electrode performance adjustment for rechargeable ion batteries[J]. Nano Energy, 2018, 43: 1-10. |
48 | BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials Research Bulletin, 1982, 17: 993-1000. |
49 | YABUUCHI N, YANO M, YOSHIDA H, et al. Synthesis and electrode performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries[J]. Journal of the Electrochemical Society, 2013, 160(5): A3131-A3137. |
50 | YOSHIDA H, YABUUCHI N, KOMABA S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries[J]. Electrochemistry Communications, 2013, 34: 60-63. |
51 | XIE Y, WANG H, XU G, et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Advanced Energy Materials, 2016, 6(24): doi: 10.1002/aenm.201601306. |
52 | SATHIYA M, HEMALATHA K, RAMESHA K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853. |
53 | YAO H R, WANG P F, WANG Y, et al. Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700189. |
54 | VITOUX L, GUIGNARD M, SUCHOMEL M R, et al. The NaxMoO2 phase diagram (1/2≤x<1): An electrochemical devil's staircase[J]. Chemistry of Materials, 2017, 29(17): 7243-7254. |
55 | WANG X, TAMARU M, OKUBO M, et al. Electrode properties of P2-Na2/3MnyCo1-yO2 as cathode materials for sodium-ion batteries[J]. Journal of Physical Chemistry C, 2013, 117: 15545-15551. |
56 | SHI Y, LI S, GAO A, et al. Probing the structural transition kinetics and charge compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 cathode for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24122-24131. |
57 | LU Z H, DAHN J R. In situ X-ray diffraction study of P2-Na2/3Ni1/3Mn2/3O2[J]. Journal of the Electrochemical Society, 2001, 148(11): A1225-A1229. |
58 | YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517. |
59 | SOMERVILLE J W, SOBKOWIAK A, TAPIA-RUIZ N, et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2019, 12(7): 2223-2232. |
60 | TALAIE E, KIM S Y, CHEN N, et al. Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67Mn0.66Fe0.20Cu0.14O2[J]. Chemistry of Materials, 2017, 29(16): 6684-6697. |
61 | DU K, ZHU J, HU G, et al. Exploring reversible oxidation of oxygen in a manganese oxide[J]. Energy & Environmental Science, 2016, 9(8): 2575-2577. |
62 | RONG X, LIU J, HU E, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2(1): 125-140. |
63 | LI Q, QIAO Y, GUO S, et al. Both cationic and anionic Co-(de)intercalation into a metal-oxide material[J]. Joule, 2018, 2(6): 1134-1145. |
64 | MALETTI S, GIEBELER L, OSWALD S, et al. Irreversible made reversible: Increasing the electrochemical capacity by understanding the structural transformations of NaxCo0.5Ti0.5O2[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36108-36119. |
65 | RISTHAUS T, CHEN L, WANG J, et al. P3 Na0.9Ni0.5Mn0.5O2 cathode material for sodium ion batteries[J]. Chemistry of Materials, 2019, 31: 5376-5383. |
66 | SONG B, HU E, LIU J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498. |
67 | RADIN M D, VAN DER VEN A. Stability of prismatic and octahedral coordination in layered oxides and sulfides intercalated with alkali and alkaline-earth metals[J]. Chemistry of Materials, 2016, 28(21): 7898-7904. |
68 | GUO S, SUN Y, LIU P, et al. Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries[J]. Science Bulletin, 2018, 63(6): 376-384. |
69 | ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688. |
70 | YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8: 14101-14109. |
71 | KUMAKURA S, TAHARA Y, SATO S, et al. P'2-Na2/3Mn0.9Me0.1O2 (Me=Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property[J]. Chemistry of Materials, 2017, 29(21): 8958-8962. |
72 | WANG L, SHI J L, SU H, et al. Composite-structure material design for high-energy lithium storage[J]. Small, 2018, 14(34): doi: 10.1002/smll.201800887. |
73 | ZHOU Y N, WANG P F, NIU Y B, et al. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019, 55: 143-150. |
74 | SU H, YU H. Composite‐structure materials for Na‐ion batteries[J]. Small Methods, 2018, 3(4): 1800205-1800215. |
75 | SINGH G, TAPIA-RUIZ N, LOPEZ DEL AMO J M, et al. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability[J]. Chemistry of Materials, 2016, 28(14): 5087-5094. |
76 | TAPIA-RUIZ N, DOSE W M, SHARMA N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies[J]. Energy & Environmental Science, 2018, 11(6): 1470-1479. |
77 | WANG Q C, MENG J K, YUE X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(2): 840-848. |
78 | LIU X, ZUO W, ZHENG B, et al. P2-Na0.67AlxMn1-xO2: Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility[J]. Angewandte Chemie-International Edition, 2019, 58: 2-12. |
79 | WANG Y, WANG L, ZHU H, et al. Ultralow‐strain Zn‐substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage[J]. Advanced Functional Materials, 2020: doi: 10.1002/adfm.201910327. |
80 | WANG Q, MARIYAPPAN S, VERGNET J, et al. Reaching the energy density limit of layered O3‐NaNi0.5Mn0.5O2 electrodes via dual Cu And Ti substitution[J]. Advanced Energy Materials, 2019, 9(36): doi: 10.1002/aenm.201901785 |
81 | DING F, ZHAO C, ZHOU D, et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries[J]. Energy Storage Materials, 2020, 30: 420-430. |
82 | ZHAO C, YAO Z, WANG Q, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes[J]. Journal of the American Chemical Society, 2020, 142(12): 5742-5750. |
83 | LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(6): doi: 10.1002/adus.201500031. |
84 | MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933. |
85 | XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium‐ion battery[J]. Advanced Energy Materials, 2019, 9(19): doi: 10.1002/aenm.201803978. |
86 | CHEN T, LIU W, LIU F, et al. Benefits of copper and magnesium cosubstitution in Na0.5Mn0.6Ni0.4O2 as a superior cathode for sodium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 844-851. |
87 | ZHAO C, DING F, LU Y, et al. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2019, 58: 1-7. |
88 | CHEN X, ZHOU X, HU M, et al. Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 20708-20714 |
89 | XU G L, AMINE R, XU Y F, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1677-1693. |
90 | QI X, LIU L, SONG N, et al. Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40215-40223. |
[1] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[2] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[3] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[4] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[5] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[6] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[7] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[8] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[9] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[10] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[11] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[12] | 林春景, 李丹华, 温浩然, 马天翼, 常宏, 常沛祥, 李海强, 刘仕强. 动力电池在充电过程中的膨胀力特性[J]. 储能科学与技术, 2022, 11(5): 1627-1633. |
[13] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[14] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[15] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||