储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1340-1349.doi: 10.19799/j.cnki.2095-4239.2020.0130
收稿日期:2020-04-02
修回日期:2020-04-18
出版日期:2020-09-05
发布日期:2020-09-08
通讯作者:
夏晖
E-mail:z214321372@126.com;xiahui@njust.edu.cn
作者简介:朱晓辉(1990—),男,博士研究生,主要研究方向为钠离子电池锰系正极材料,E-mail:基金资助:
Xiaohui ZHU(
), Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA(
)
Received:2020-04-02
Revised:2020-04-18
Online:2020-09-05
Published:2020-09-08
Contact:
Hui XIA
E-mail:z214321372@126.com;xiahui@njust.edu.cn
摘要:
由于地球钠元素资源丰富、来源广泛,钠离子电池被认为是将来能够替代锂离子电池用于大规模储能的新型二次电池技术之一。正极材料作为钠离子电池的重要组成部分,决定了钠离子电池电化学性能的优劣。然而由于钠离子半径较大,开发结构稳定且具有快速钠离子扩散性能的正极材料是获得高性能钠离子电池的挑战之一。近年来,越来越多的层状正极材料体系被开发出来,并展现出良好的电化学性能,对于钠离子电池具有较好的应用前景。本文综述了目前常见的层状钠离子电池正极材料,重点分析和探讨了层状钠离子电池正极材料的储钠机制,并展望了未来钠离子电池正极材料的发展趋势及应用前景。
中图分类号:
朱晓辉, 庄宇航, 赵旸, 倪明珠, 徐璟, 夏晖. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349.
Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349.
| 1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. |
| 2 | BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164: A5019-A5025. |
| 3 | BRACONNIER J J, DELMAS C, FOUASSIER C, et al. Electrochemical behavior of the phases NaxCoO2[J]. Materials Research Bulletin, 1980, 15: 1797-1804. |
| 4 | NAGELBERG A S, WORRELL W L. Thermodynamic study of sodium-intercalated TaS2 and TiS2[J]. Journal of Solid State Chemistry, 1979, 29: 345-354. |
| 5 | PARANT J P, OLAZCUAG R, DEVALETT M, et al. New phases of formula NaxMnO2 (x less than or equal to 1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-5. |
| 6 | WHITTINGHAM M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12: 41-99. |
| 7 | QIAN J F, ZHOU M, CAO Y L, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 410-414. |
| 8 | KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 710-721. |
| 9 | MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57: 323-331. |
| 10 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99: 81-85. |
| 11 | GUO S, YI J, SUN Y, et al. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries[J]. Energy & Environmental Science, 2016, 9: 2978-3006. |
| 12 | DELMAS C, BRACONNIER J J, MAAZAZ A, et al. Soft chemistry in AxMO2 sheet oxides[J]. Revue de Chimie Minérale, 1982, 19: 343-351. |
| 13 | MAAZAZ A, DELMAS C, HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena, 1983, 1: 45-51. |
| 14 | BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials Research Bulletin, 1982, 17: 993-1000. |
| 15 | ZHAO J, ZHAO L W, DIMOV N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160: A3077-A3081. |
| 16 | LI Y, GAO Y, WANG X, et al. Iron migration and oxygen oxidation during sodium extraction from NaFeO2[J]. Nano Energy, 2018, 47: 519-526. |
| 17 | LEE E, BROWN D E, ALP E E, et al. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2[J]. Chemistry of Materials, 2015, 27: 6755-6764. |
| 18 | LI X, WANG Y, WU D, et al. Jahn-Teller assisted Na diffusion for high performance Na ion batteries[J]. Chemistry of Materials, 2016, 28: 6575-6583. |
| 19 | ZHOU Y N, DING J J, NAM K M, et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption[J]. Journal of Materials Chemistry A, 2013, 1: 11130-11134. |
| 20 | LEI Y, LI X, LIU L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides[J]. Chemistry of Materials, 2014, 26: 5288-5296. |
| 21 | WANG L, WANG J, ZHANG X, et al. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries[J]. Nano Energy, 2017, 34: 215-223. |
| 22 | KUBOTA K, IKEUCHI I, NAKAYAMA T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction[J]. The Journal of Physical Chemistry C, 2015, 119: 166-175. |
| 23 | KUBOTA K K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39: 416-422. |
| 24 | KUBOTA K, KUMAKURA S, YODA Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201703415. |
| 25 | BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2: A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136: 17243-17248. |
| 26 | BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10: 74-80. |
| 27 | KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and manganese stoichiometry of P2-type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 128: 12952-12955. |
| 28 | CLÉMENT R J, BRUCE P G, GREY C P. Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162: A2589-A2604. |
| 29 | PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-11. |
| 30 | TAPIA-RUIZ N, DOSE W M, SHARMA N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies[J]. Energy & Environmental Science, 2018, 11: 1470-1479. |
| 31 | SOMERVILLE J W, SOBKOWIAK A, TAPIA-RUIZ N, et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2019, 12: 2223-2232. |
| 32 | WANG P F, YAO H R, LIU X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Science Advances, 2018, 4: doi: 10.1126/sciadv.aar6018. |
| 33 | ZHAO C, DING F, LU Y, et al. High-entropy chemistry stabilizing layered O3-type structure in Na-ion cathode[J]. Angewandte Chemie International Edition, 2019, 59: 1-7. |
| 34 | HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2020, 577: 502-508. |
| 35 | MORTEMARD DE BOISSE B, NISHIMURA S I, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201800409. |
| 36 | RONG X, HU E, LU Y, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3: 503-517. |
| 37 | XIA H, ZHU X, LIU J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage[J]. Nature Communications, 2018, 9: doi: 10.1038/s41467-018-07595-y. |
| 38 | ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10: 1051-1074. |
| 39 | DOUBAJI S, PHILIPPE B, SAADOUNE I, et al. Passivation layer and cathodic redox reactions in sodium-ion batteries probed by HAXPES[J]. ChemSusChem, 2016, 9: 97-108. |
| 40 | MONYONCHO E, BISSESSUR R. Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution[J]. Materials Research Bulletin, 2013, 48: 2678-2686. |
| 41 | KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51: 6211-6220. |
| 42 | KUBOTA K, KOMABA S. Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550. |
| 43 | MYUNG S T, HITOSHI Y, SUN Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21: 9891-9911. |
| 44 | MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27: 6928-6933. |
| 45 | LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2: doi: 10.1002/advs.201500031. |
| 46 | YAO H R, WANG P F, GONG Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139: 8440-8443. |
| 47 | MU L Q, HU Y S, CHEN L Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B, 2015, 24: doi: 10.1088/1674-1056/24/3/038202. |
| 48 | HWANG J Y, MYUNG S T, CHOI J U, et al. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 23671-23680. |
| 49 | GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00157-8. |
| 50 | TSUCHIYA Y, TAKANASHI K, NISHINOBO T, et al. Layered NaxCrxTi1-xO2 as bifunctional electrode materials for rechargeable sodium batteries[J]. Chemistry of Materials, 2016, 28: 7006-7016. |
| 51 | LI W, YAO Z, ZHOU C A, et al. Boosting high-rate sodium storage performance of N-doped carbon-encapsulated Na3V2(PO4)3 nanoparticles anchoring on carbon cloth[J]. Small, 2019, 15: doi: 10.1002/smll.201902432. |
| 52 | ZHANG Y, DENG S, SHEN Y, et al. Construction of 1T-MoSe2/TiC@C branch-core arrays as advanced anodes for enhanced sodium ion storage[J]. ChemSusChem, 2020, 13: 1575-1581. |
| 53 | CAO M H, WANG Y, SHADIKE Z, et al. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 5442-5448. |
| 54 | SAHA S, ASSAT G, SOUGRATI M T, et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides[J]. Nature Energy, 2019, 4: 977-987. |
| 55 | LIU Q, HU Z, CHEN M, et al. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs[J]. Advanced Functional Materials, 2020, 30: doi: 10.1002/adfm.201909530. |
| [1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
| [2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
| [3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
| [4] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
| [5] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
| [6] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
| [7] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
| [8] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
| [9] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
| [10] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
| [11] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
| [12] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
| [13] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
| [14] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
| [15] | 赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||