1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657.
|
2 |
BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164: A5019-A5025.
|
3 |
BRACONNIER J J, DELMAS C, FOUASSIER C, et al. Electrochemical behavior of the phases NaxCoO2[J]. Materials Research Bulletin, 1980, 15: 1797-1804.
|
4 |
NAGELBERG A S, WORRELL W L. Thermodynamic study of sodium-intercalated TaS2 and TiS2[J]. Journal of Solid State Chemistry, 1979, 29: 345-354.
|
5 |
PARANT J P, OLAZCUAG R, DEVALETT M, et al. New phases of formula NaxMnO2 (x less than or equal to 1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-5.
|
6 |
WHITTINGHAM M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12: 41-99.
|
7 |
QIAN J F, ZHOU M, CAO Y L, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 410-414.
|
8 |
KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 710-721.
|
9 |
MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57: 323-331.
|
10 |
DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99: 81-85.
|
11 |
GUO S, YI J, SUN Y, et al. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries[J]. Energy & Environmental Science, 2016, 9: 2978-3006.
|
12 |
DELMAS C, BRACONNIER J J, MAAZAZ A, et al. Soft chemistry in AxMO2 sheet oxides[J]. Revue de Chimie Minérale, 1982, 19: 343-351.
|
13 |
MAAZAZ A, DELMAS C, HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena, 1983, 1: 45-51.
|
14 |
BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials Research Bulletin, 1982, 17: 993-1000.
|
15 |
ZHAO J, ZHAO L W, DIMOV N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160: A3077-A3081.
|
16 |
LI Y, GAO Y, WANG X, et al. Iron migration and oxygen oxidation during sodium extraction from NaFeO2[J]. Nano Energy, 2018, 47: 519-526.
|
17 |
LEE E, BROWN D E, ALP E E, et al. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2[J]. Chemistry of Materials, 2015, 27: 6755-6764.
|
18 |
LI X, WANG Y, WU D, et al. Jahn-Teller assisted Na diffusion for high performance Na ion batteries[J]. Chemistry of Materials, 2016, 28: 6575-6583.
|
19 |
ZHOU Y N, DING J J, NAM K M, et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption[J]. Journal of Materials Chemistry A, 2013, 1: 11130-11134.
|
20 |
LEI Y, LI X, LIU L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides[J]. Chemistry of Materials, 2014, 26: 5288-5296.
|
21 |
WANG L, WANG J, ZHANG X, et al. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries[J]. Nano Energy, 2017, 34: 215-223.
|
22 |
KUBOTA K, IKEUCHI I, NAKAYAMA T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction[J]. The Journal of Physical Chemistry C, 2015, 119: 166-175.
|
23 |
KUBOTA K K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39: 416-422.
|
24 |
KUBOTA K, KUMAKURA S, YODA Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201703415.
|
25 |
BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2: A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136: 17243-17248.
|
26 |
BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10: 74-80.
|
27 |
KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and manganese stoichiometry of P2-type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 128: 12952-12955.
|
28 |
CLÉMENT R J, BRUCE P G, GREY C P. Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162: A2589-A2604.
|
29 |
PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-11.
|
30 |
TAPIA-RUIZ N, DOSE W M, SHARMA N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies[J]. Energy & Environmental Science, 2018, 11: 1470-1479.
|
31 |
SOMERVILLE J W, SOBKOWIAK A, TAPIA-RUIZ N, et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2019, 12: 2223-2232.
|
32 |
WANG P F, YAO H R, LIU X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Science Advances, 2018, 4: doi: 10.1126/sciadv.aar6018.
|
33 |
ZHAO C, DING F, LU Y, et al. High-entropy chemistry stabilizing layered O3-type structure in Na-ion cathode[J]. Angewandte Chemie International Edition, 2019, 59: 1-7.
|
34 |
HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2020, 577: 502-508.
|
35 |
MORTEMARD DE BOISSE B, NISHIMURA S I, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201800409.
|
36 |
RONG X, HU E, LU Y, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3: 503-517.
|
37 |
XIA H, ZHU X, LIU J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage[J]. Nature Communications, 2018, 9: doi: 10.1038/s41467-018-07595-y.
|
38 |
ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10: 1051-1074.
|
39 |
DOUBAJI S, PHILIPPE B, SAADOUNE I, et al. Passivation layer and cathodic redox reactions in sodium-ion batteries probed by HAXPES[J]. ChemSusChem, 2016, 9: 97-108.
|
40 |
MONYONCHO E, BISSESSUR R. Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution[J]. Materials Research Bulletin, 2013, 48: 2678-2686.
|
41 |
KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51: 6211-6220.
|
42 |
KUBOTA K, KOMABA S. Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550.
|
43 |
MYUNG S T, HITOSHI Y, SUN Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21: 9891-9911.
|
44 |
MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27: 6928-6933.
|
45 |
LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2: doi: 10.1002/advs.201500031.
|
46 |
YAO H R, WANG P F, GONG Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139: 8440-8443.
|
47 |
MU L Q, HU Y S, CHEN L Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B, 2015, 24: doi: 10.1088/1674-1056/24/3/038202.
|
48 |
HWANG J Y, MYUNG S T, CHOI J U, et al. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 23671-23680.
|
49 |
GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00157-8.
|
50 |
TSUCHIYA Y, TAKANASHI K, NISHINOBO T, et al. Layered NaxCrxTi1-xO2 as bifunctional electrode materials for rechargeable sodium batteries[J]. Chemistry of Materials, 2016, 28: 7006-7016.
|
51 |
LI W, YAO Z, ZHOU C A, et al. Boosting high-rate sodium storage performance of N-doped carbon-encapsulated Na3V2(PO4)3 nanoparticles anchoring on carbon cloth[J]. Small, 2019, 15: doi: 10.1002/smll.201902432.
|
52 |
ZHANG Y, DENG S, SHEN Y, et al. Construction of 1T-MoSe2/TiC@C branch-core arrays as advanced anodes for enhanced sodium ion storage[J]. ChemSusChem, 2020, 13: 1575-1581.
|
53 |
CAO M H, WANG Y, SHADIKE Z, et al. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 5442-5448.
|
54 |
SAHA S, ASSAT G, SOUGRATI M T, et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides[J]. Nature Energy, 2019, 4: 977-987.
|
55 |
LIU Q, HU Z, CHEN M, et al. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs[J]. Advanced Functional Materials, 2020, 30: doi: 10.1002/adfm.201909530.
|