储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1309-1317.doi: 10.19799/j.cnki.2095-4239.2020.0230
高永晟, 陈光海, 王欣然, 白莹, 吴川
收稿日期:
2020-06-30
修回日期:
2020-07-23
出版日期:
2020-09-05
发布日期:
2020-09-08
作者简介:
高永晟(1994—),男,硕士研究生,研究方向为钠离子电
基金资助:
Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU
Received:
2020-06-30
Revised:
2020-07-23
Online:
2020-09-05
Published:
2020-09-08
摘要:
钠离子电池因为资源的优势以及在大规模储能系统中潜在的应用价值而被研究者们广泛关注。电解质是电池的核心部件之一,起着传导离子、分隔正负极的作用。目前常用到的有机电解质存在着易燃、易泄漏的安全性风险,在钠离子电池的进一步发展与应用中需要克服。本文通过对近期相关文献的总结,综述了提高钠离子电池电解质安全性的开发策略以及研究进展:一方面可以在有机电解质的基础上进行改进与优化,如使用成膜添加剂、阻燃添加剂或者使用高浓度盐电解质;另一方面可以开发新型电解质体系,如水系、离子液体、全固态、离子凝胶等。新型高安全性电解质是目前钠离子电池领域内的研究热点,本文也对几种新型电解质各自的优缺点以及面临的主要挑战进行了详细的分析与讨论,并重点介绍了离子凝胶电解质在钠离子电池中的应用前景。最后,对钠离子电池电解质的发展趋势进行了展望。
中图分类号:
高永晟, 陈光海, 王欣然, 白莹, 吴川. 钠离子电池电解质安全性:改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317.
Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress[J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317.
1 | DUNN B, KAMATH H, TARASCONE J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 6058(334): 928-935. |
2 | LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
3 | 李冰心, 张振花. 中国锂产业概况[J]. 中国有色金属, 2018(2): 40-41. |
LI Binxin, ZHANG Zhenhua. Overview of China's lithium industry[J]. China Nonferrous Metals, 2018(2): 40-41. | |
4 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
5 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
6 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature, 2018(3): doi: 10.1038/natrevmats.2018.13. |
7 | 朱娜, 吴锋, 吴川, 等. 钠离子电池的电解质[J]. 储能科学与技术, 2016, 5(3): 285-291. |
ZHU N, WU F, WU C, et al. Electrolytes of sodium ion batteries[J]. Energy Stroage Science and Technology, 2016, 5(3): 285-291. | |
8 | LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2(9): 1747-1770. |
9 | HUANG Y, ZHAO L, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): doi: 10.1002/adma.201808393. |
10 | THIMMAPPA R, GAUTAM M, ARALEKALLU S, et al. A rechargeable aqueous sodium-ion battery[J]. ChemElectroChem, 2019, 6(7): 2095-2099. |
11 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012. |
12 | BRAGA M H, GRUNDISH N S, MURCHISON A J, et al. Alternative strategy for a safe rechargeable battery[J]. Energy & Environmental Science, 2017, 10(1): 331-336. |
13 | ZHOU C, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198. |
14 | NOOR S A M, YOON H, FORSYTH M, et al. Gelled ionic liquid sodium ion conductors for sodium batteries[J]. Electrochimica Acta, 2015, 169: 376-381. |
15 | ESHETU G G, GRUGEON S, KIM H, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions[J]. ChemSusChem, 2016, 9(5): 462-471. |
16 | SAMUEL W, HURLBUTT K, PASTA M. A new solid-state sodium-metal battery[J]. Chem, 2018, 4: 661-670. |
17 | FONDARD J, IRISARRI E, COURREGES C, et al. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab75fd. |
18 | KIM J H, JEONG S K. Interfacial reactions between graphite and propylene carbonate-based solution after pre-generating a solid electrolyte interface[J]. Materials Research Innovations, 2015, 19: doi: 10.1179/1432891715Z.0000000001406. |
19 | YU Y, CHE H, YANG X, et al. Non-flammable organic electrolyte for sodium-ion batteries[J]. Electrochemistry Communications, 2020, 110: doi: 10.1016/j.elecom.2019.106635. |
20 | JIANG X, LIU X, ZENG Z, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018, 8(36): doi: 10.1002/aenm.201802176. |
21 | ZENG Z, JIANG X, YUAN D, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016, 3(9): doi: 10.1002/advs.201600066. |
22 | LIU X, JIANG X, ZHONG F, et al. High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2(PO4)3 electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27833-27838. |
23 | JIANG X, ZENG Z, XIAO L, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43733-43738. |
24 | FENG J, AN Y, CI L, et al. Nonflammable electrolyte for safer non-aqueous sodium batteries[J]. Journal of Materials Chemistry A, 2015, 3(28): 14539-14544. |
25 | ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
26 | LIU X, JIANG X, ZENG Z, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38141-38150. |
27 | CAO R, MISHRA K, LI X, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825-830. |
28 | GENG C, BUCHHOLZ D, KIM G, et al. Influence of salt concentration on the properties of sodium‐based electrolytes[J]. Small Methods, 2018, 3(4): doi: 10.1002/smtd.201800208. |
29 | LEE M H, KIM S J, CHANG D, et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery[J]. Materials Today, 2019, 29: 26-36. |
30 | MARR P C, MARR A C. Ionic liquid gel materials: Applications in green and sustainable chemistry[J]. Green Chemistry, 2016, 18, doi: 10.1039/c5gc02277k. |
31 | YANG Q, ZHANG Z, SUN X, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews, 2018, 47(6): 2020-2064. |
32 | WU F, ZHU N, BAI Y, et al. Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21381-21386. |
33 | BRUTTI S, NAVARRA M, MARESCA G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimica Acta, 2019, 306: 317-326. |
34 | LIU Y, FANG X, ZHANG A, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy, 2016, 27: 27-34. |
35 | WU T, WEN Z Y, SUN C Z, et al. Disordered carbon tubes based on cotton cloth for modulating interface impedance in β''-Al2O3-based solid- state sodium metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12623-12629. |
36 | GOODENOUGH J B, HONG H P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Matrials Research Bulletin, 1976, 11: 203-220. |
37 | SONG S, DUONG H, KORSUNSKY A, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep32330. |
38 | SMALL L J, WHEELER J S, IHLEFELD J F, et al. Enhanced alkaline stability in a hafnium-substituted NaSICON ion conductor[J]. Journal of Materials Chemistry A, 2018, 6(20): 9691-9698. |
39 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): doi: 10.1002/aenm.201601196. |
40 | NARAYANAN S, REID S, BUTLER S, et al. Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12[J]. Solid State Ionics, 2019, 331: 22-29. |
41 | NOI K, SUZUKI K, TANIBATA N, et al. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive[J]. Journal of the American Ceramic Society, 2018, 101(3): 1255-1265. |
42 | CHEN G, YE L, ZHANG K, et al. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries[J]. Chemical Engineering Journal, 2020, 394: doi: 10.1016/j.cej.2020.124885. |
43 | CHEN G, BAI Y, GAO Y, et al. Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: Insight into plasticizing mechanism and application for solid-state sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43252-43260. |
44 | JIANG Y X, XU J M, ZHUANG Q C, et al. A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries[J]. Journal of Solid State Electrochemistry, 2008, 12: 353-361. |
45 | SUN H B, GUO J Z, ZHANG Y, et al. High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24192-24197. |
46 | NI'MAH Y L, CHENG M, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. |
47 | YU C, GANAPATHY S, KLERK N, et al. Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(39): 15095-15105. |
48 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1–xS4 (M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388. |
49 | TANIBATA N, NOI K, HAYASHI A, et al. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes[J]. RSC Advances, 2014, 4(33): 17120-17123. |
50 | 陈光海, 白莹, 高永晟, 等. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. |
CHEN Guanghai, BAI Ying, GAO Yongsheng, et al. Chalcogenide electrolyte for all-solid-state sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. | |
51 | YU Z, SHANG S, WANG D, et al. Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery[J]. Energy Storage Materials, 2019, 17: 70-77. |
52 | SHANG S L, YU Z, WANG Y, et al. Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16261-16269. |
53 | BIDEAU J L, VIAU L, VIOUX A. Ionogels, ionic liquid based hybrid materials[J]. Chemical Society Reviews, 2011, 40(2): 907-25. |
54 | KUMAR D, HASHMI S A. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. Solid State Ionics, 2010, 181(8/9/10): 416-423. |
55 | SONG S, KOTOBUKI M, ZHENG F, et al. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries[J]. Journal of Materials Chemistry A, 2017, 5(14): 6424-6431. |
56 | WU F, CHEN N, CHEN R, et al. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries[J]. Nano Energy, 2017, 31: 9-18. |
57 | CHEN R, QU W, QIAN J, et al. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range[J]. Journal of Materials Chemistry A, 2017, 5(47): 24677-24685. |
58 | CHEN N, XING X, WANG L, et al. "Tai Chi" philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery[J]. Nano Energy, 2018, 47: 35-42. |
59 | LI X, ZHANG Z, YIN K, et al. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries[J]. Journal of Power Sources, 2015, 278: 128-132. |
60 | HAN L, WANG Z, KONG D, et al. An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21280-21286. |
61 | WU J F, GUO X. Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries[J]. Small, 2019, 15(5): doi: 10.1002/smll.201804413. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[3] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[4] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[5] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[6] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[7] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[8] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[9] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[10] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[11] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[12] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[13] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
[14] | 胡振恺, 雷博, 李勇琦, 史尤杰, 雷旗开, 何智鹏. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
[15] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||