储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1401-1410.doi: 10.19799/j.cnki.2095-4239.2021.0580

• 储能材料与器件 • 上一篇    下一篇

柔性金属空气电池的发展现状及未来展望

陈志城(), 李宗旭, 蔡玲, 刘易斯()   

  1. 湖北师范大学,湖北 黄石 435002
  • 收稿日期:2021-11-04 修回日期:2022-01-05 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 刘易斯 E-mail:czc420321@foxmail.com;yliu88@hbnu.edu.cn
  • 作者简介:陈志城(1995—),男,硕士研究生,研究方向为电催化、金属空气电池,E-mail:czc420321@foxmail.com
  • 基金资助:
    国家自然科学基金青年项目(22008058);国家大学生创新创业项目(202110513001)

Development status and future prospects of flexible metal-air batteries

Zhicheng CHEN(), Zongxu LI, Ling CAI, Yisi LIU()   

  1. Hubei Normal University, Huangshi 435002, Hubei, China
  • Received:2021-11-04 Revised:2022-01-05 Online:2022-05-05 Published:2022-05-07
  • Contact: Yisi LIU E-mail:czc420321@foxmail.com;yliu88@hbnu.edu.cn

摘要:

柔性金属空气电池由于兼具柔性形变和能源存储受到广泛关注。然而,柔性金属空气电池目前仍存在诸多问题,电池柔性、空气电极催化活性和空气电极柔性都亟待提高,使用的固态凝胶电解质存在离子电导率不高、力学性能差等问题。本文通过对近期相关文献的梳理,首先分类总结了一维线缆型、二维平面型和三维三明治结构柔性金属空气电池各自的结构特点;其次,重点讨论了非自支撑和自支撑空气电极的制备及存在的问题。非自支撑电极使用黏结剂将催化剂涂覆在导电基底上,黏结剂等添加物会增加非活性物质组分、堵塞孔结构、降低电导率,催化剂也容易脱落,而自支撑电极使用水热、气相沉积、原子层沉积及静电纺丝等方法使催化剂原位生长在导电基底上,避免了非自支撑电极存在的问题。另外,本文总结了目前提高电解质性能的相关研究,通过降低聚合物的结晶度,改变温度等方式提高离子电导率。最后,对柔性金属空气电池的发展提出了展望,认为自支撑电极制备和新凝胶电解质材料的探索将会成为研究热门。如果能使空气电极和凝胶电解质两个界面接触更紧密,两者结合成一个有机整体,通过滴加电解液和添加金属箔片直接启动电池,简化电池组装,使电池应用更加广泛。

关键词: 柔性金属空气电池, 空气电极, 自支撑, 凝胶电解质

Abstract:

A flexible metal-air battery is paid lots of attention because of flexible deformation and energy storage. At present, flexible metal-air batteries are still beset by a host of problems, including battery flexibility, low conductivity and flexibility in air electrodes, and low ionic conductivity and poor mechanical properties in solid gel electrolytes. This review summarizes the structural classification of the main types of flexible metal-air batteries: one-dimensional cable-type, two-dimensional planar-type, and three-dimensional sandwich-structure type. Next, the paper examines the preparation and characteristics of non-free-standing and free-standing air electrodes. Non-free-standing electrodes are prepared using a binder to coat the catalyst onto a conductive substrate (e.g., carbon paper or cloth). Binder additives have disadvantages: they increase the inactive material content, block the pore structure, reduce electrical conductivity, and allow the catalyst to flake off. In contrast, free-standing electrodes use hydrothermal vapor-phase atomic layer deposition to grow catalysts in situ on conductive substrates. This avoids the problems noted above for non-free-standing electrodes. This review goes on to summarize related research into improving electrolyte performance and ionic conductivity (by adding different polymers, reducing polymer crystallinity, and through temperature changes). Finally, the outlook for future development of metal-air batteries is explored. Preparation of free-standing electrodes and investigation of new gel electrolyte materials are expected to become research hotspots. If the interface between air electrode and gel electrolyte can be brought into closer contact, leading to integration, the battery could be started directly by dripping electrolyte and adding metal foil. This would greatly simplify assembly and extend the potential applications of flexible metal-air batteries.

Key words: flexible metal-air batteries, cathode, free-standing, gel electrolyte

中图分类号: