1 |
曹宁, 孟佳欣, 臧晓蓓. 碳基柔性正极制备的综合性实验研究[J]. 实验室研究与探索, 2021, 40(2): 38-42, 53.
|
|
CAO N, MENG J X, ZANG X B. Comprehensive experimental study on the preparation of carbon-based flexible cathode[J]. Research and Exploration in Laboratory, 2021, 40(2): 38-42, 53.
|
2 |
孟锦涛, 周良毅, 钟芸, 等. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
|
|
MENG J T, ZHOU L Y, ZHONG Y, et al. Research progress on flexible sodium-ion batteries[J]. Materials Reports, 2020, 34(1): 1169-1176.
|
3 |
马超. 柔性可充锌—空电池锌电极的电化学制备及电池性能[D]. 天津: 天津大学, 2018.
|
|
MA C. Electrochemical preparation and cell performance of zinc electrodes for flexible rechargeable zinc-air batteries[D]. Tianjin: Tianjin University, 2018.
|
4 |
刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716.
|
|
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716.
|
5 |
LI Y B, FU J, ZHONG C, et al. Recent advances in flexible zinc-based rechargeable batteries[J]. Advanced Energy Materials, 2019, 9(1): doi:10.1002/aenm.201802605.
|
6 |
YU H H, LIU D P, FENG X L, et al. Mini review: Recent advances on flexible rechargeable Li-air batteries[J]. Energy & Fuels, 2021, 35(6): 4751-4761.
|
7 |
LIU Y S, SUN Q, LI W Z, et al. A comprehensive review on recent progress in aluminum-air batteries[J]. Green Energy & Environment, 2017, 2(3): 246-277.
|
8 |
李蕊. 基于材料、集流体与电池结构设计的柔性/可拉伸电池的研究[D]. 北京: 北京科技大学, 2021.
|
|
LI R. The study of materials, current collector and cell structure design for flexible/stretchable batteries[D]. Beijing: University of Science and Technology Beijing, 2021.
|
9 |
CAO Z Q, HU H B, WU M Z, et al. Planar all-solid-state rechargeable Zn-air batteries for compact wearable energy storage[J]. Journal of Materials Chemistry A, 2019, 7(29): 17581-17593.
|
10 |
ZHANG Y G, DENG Y P, WANG J Y, et al. Recent progress on flexible Zn-air batteries[J]. Energy Storage Materials, 2021, 35: 538-549.
|
11 |
SONG Z S, DING J, LIU B, et al. A rechargeable Zn-air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier[J]. Advanced Materials, 2020, 32(22): doi:10.1002/adma.201908127.
|
12 |
ZUO X X, CHANG K, ZHAO J, et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material[J]. Journal of Materials Chemistry A, 2016, 4(1): 51-58.
|
13 |
PARK J, PARK M, NAM G, et al. All-solid-state cable-type flexible zinc-air battery[J]. Advanced Materials, 2015, 27(8): 1396-1401.
|
14 |
SHEN Y T, LIANG L J, ZHANG S Q, et al. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing[J]. Nanoscale, 2018, 10(4): 1622-1630.
|
15 |
TANG C, WANG B, WANG H F, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Advanced Materials, 2017, 29(37): doi:10.1002/adma.201703185.
|
16 |
TAN Y Y, ZHANG Z Y, LEI Z, et al. Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co-CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn-Air batteries[J]. Journal of Power Sources, 2020, 473: doi:10.1016/j.jpowsour.2020.228570.
|
17 |
WANG W, TANG M H, ZHENG Z Y, et al. Alkaline polymer membrane-based ultrathin, flexible, and high-performance solid-state Zn-air battery[J]. Advanced Energy Materials, 2019, 9(14): doi:10.1002/aenm.201803628.
|
18 |
陈祥, 雷凯翔, 孙洪明, 等. 尖晶石型氧化物催化剂与金属-空气电池[J]. 储能科学与技术, 2017, 6(5): 904-923.
|
|
CHEN X, LEI K X, SUN H M, et al. Spinel-type transition metal oxide electrocatalysts for metal-air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 904-923.
|
19 |
BIDAULT F, BRETT D J L, MIDDLETON P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources, 2009, 187(1): 39-48.
|
20 |
LIN C, SHINDE S S, WANG Y, et al. Flexible and rechargeable Zn-air batteries based on green feedstocks with 75% round-trip efficiency[J]. Sustainable Energy & Fuels, 2017, 1(9): 1909-1914.
|
21 |
XU N N, CAI Y X, PENG L W, et al. Superior stability of a bifunctional oxygen electrode for primary, rechargeable and flexible Zn-air batteries[J]. Nanoscale, 2018, 10(28): 13626-13637.
|
22 |
WANG Z F, RUAN Z H, LIU Z X, et al. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function[J]. Journal of Materials Chemistry A, 2018, 6(18): 8549-8557.
|
23 |
LU Q, ZOU X H, LIAO K M, et al. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-Air batteries[J]. Carbon Energy, 2020, 2(3): 461-471.
|
24 |
ZHU C Y, MA Y Y, ZANG W J, et al. Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries[J]. Chemical Engineering Journal, 2019, 369: 988-995.
|
25 |
JIN Q Y, REN B W, CUI H, et al. Nitrogen and cobalt co-doped carbon nanotube films as binder-free trifunctional electrode for flexible zinc-air battery and self-powered overall water splitting[J]. Applied Catalysis B: Environmental, 2021, 283: doi:10.1016/j.apcatb.2020.119643.
|
26 |
ZHAO X T, ABBAS S C, HUANG Y Y, et al. Robust and highly active FeNi@NCNT nanowire arrays as integrated air electrode for flexible solid-state rechargeable Zn-air batteries[J]. Advanced Materials Interfaces, 2018, 5(9): doi:10.1002/admi.201701448.
|
27 |
WU Y G, RAN F. Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 344: 1-10.
|
28 |
WANG X D, ZHANG Y F, ZHANG X J, et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J]. Advanced Materials, 2018, 30(12): doi:10.1002/adma.201706738.
|
29 |
WANG P C, WAN L, LIN Y Q, et al. Construction of mass-transfer channel in air electrode with bifunctional catalyst for rechargeable zinc-air battery[J]. Electrochimica Acta, 2019, 320: doi:10.1016/j.electacta.2019.134564.
|
30 |
ZHANG L, HUANG Q A, YAN W, et al. Design and fabrication of non-noble metal catalyst-based air-cathodes for metal-air battery[J]. The Canadian Journal of Chemical Engineering, 2019, 97(12): 2984-2993.
|
31 |
WANG Y M, SONG S F, XU C H, et al. Development of solid-state electrolytes for sodium-ion battery-A short review[J]. Nano Materials Science, 2019, 1(2): 91-100.
|
32 |
WANG Y F, PAN W D, LEONG K W, et al. Solid-state Al-air battery with an ethanol gel electrolyte[J]. Green Energy & Environment, 2021: doi:10.1016/j.gee.2021.05.011.
|
33 |
ZAHID A R M, MASRI M N, HUSSIN M H, et al. The preliminary study on cassava (Manihot Esculenta) as gel polymer electrolyte for zinc-air battery[J]. AIP Conference Proceedings, 2018, 2030(1): doi:10.1063/1.5066919.
|
34 |
ZHANG Z, ZUO C C, LIU Z H, et al. All-solid-state Al-air batteries with polymer alkaline gel electrolyte[J]. Journal of Power Sources, 2014, 251: 470-475.
|
35 |
MIAO H, CHEN B, LI S H, et al. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227653.
|
36 |
DEGHIEDY N M, EL-SAYED S M. Evaluation of the structural and optical characters of PVA/PVP blended films[J]. Optical Materials, 2020, 100: doi:10.1016/j.optmat.2020.109667.
|
37 |
MANO V, RIBEIRO E SILVA M E S, BARBANI N, et al. Binary blends based on poly(N-isopropylacrylamide): Miscibility studies with PVA, PVP, and PAA[J]. Journal of Applied Polymer Science, 2004, 92(2): 743-748.
|
38 |
MIGLIARDINI F, PALMA T M, GAELE M F, et al. Solid and acid electrolytes for Al-air batteries based on xanthan-HCl hydrogels[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2901-2916.
|
39 |
DI PALMA T M, MIGLIARDINI F, GAELE M F, et al. Aluminum-air batteries with solid hydrogel electrolytes: Effect of pH upon cell performance[J]. Analytical Letters, 2021, 54(1/2): 28-39.
|
40 |
HATTA F F, YAHYA M Z A, ALI A M M, et al. Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte[J]. Ionics, 2005, 11(5/6): 418-422.
|
41 |
陆霞, 吴仁香, 朱云峰, 等. PVA-PAA-KOH碱性聚合物电解质膜的制备及其性能[J]. 功能材料, 2013, 44(4): 590-594.
|
|
LU X, WU R X, ZHU Y F, et al. Preparation and properties of PVA-PAA-KOH alkaline polymer electrolyte membrane[J]. Journal of Functional Materials, 2013, 44(4): 590-594.
|
42 |
YANG C C, LIN S J. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery[J]. Journal of Power Sources, 2002, 112(2): 497-503.
|
43 |
WU G M, LIN S J, YANG C C. Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 802-808.
|
44 |
WANG M X, FAN L D, QIN G, et al. Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor[J]. Journal of Membrane Science, 2020, 597: doi:10.1016/j.memsci.2019.117740.
|
45 |
LIAO Y H, RAO M M, LI W S, et al. Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J]. Journal of Membrane Science, 2010, 352(1/2): 95-99.
|