储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1383-1400.doi: 10.19799/j.cnki.2095-4239.2021.0570
收稿日期:
2021-11-01
修回日期:
2021-12-13
出版日期:
2022-05-05
发布日期:
2022-05-07
通讯作者:
谢佳
E-mail:m201970850@hust.edu.cn;urey56@foxmail.com;xiejia@hust.edu.cn
作者简介:
张策(1994—),男,硕士研究生,研究方向为电化学储能材料,E-mail:m201970850@hust.edu.cn基金资助:
Ce ZHANG1,2(), Siwu LI1(), Jia XIE1()
Received:
2021-11-01
Revised:
2021-12-13
Online:
2022-05-05
Published:
2022-05-07
Contact:
Jia XIE
E-mail:m201970850@hust.edu.cn;urey56@foxmail.com;xiejia@hust.edu.cn
摘要:
负极是锂离子电池的关键组件,实现高容量合金型负极在锂离子电池中的应用可大幅提升锂离子电池的能量密度。然而目前合金型负极存在严重的低首圈库仑效率问题,致使大量活性锂在循环初期被不可逆消耗,制约了其在提升锂离子电池能量密度方面发挥优势。预锂化技术被认为是解决合金型负极锂损失问题的有效方案,主要分为负极预锂化与正极预锂化。本文通过调研整理近期相关文献,详细分析了不同预锂化技术在合金负极中的研究进展与应用前景。对于负极预锂化技术,主要介绍了电化学预锂化、接触金属锂、化学预锂化以及负极富锂添加剂等策略;对于正极预锂化技术,主要介绍了正极富锂添加剂与正极过锂化两种方法;对于不同预锂化技术的实用化,主要分析了补锂试剂稳定性与安全性、补锂试剂的利用率以及成本等问题。综合分析表明,预锂化技术是弥补不可逆容量损失、提高合金型负极锂离子电池的能量密度与循环寿命的有效方案,低成本与高安全性是预锂化技术实用化的关键所在。
中图分类号:
张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400.
Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes[J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400.
表1
负极预锂化前后锂离子电池的电化学性能对比"
负极 | 方法 | 电池体系 | 预锂化前ICE | 预锂化后ICE | 循环性能 | 参考文献 |
---|---|---|---|---|---|---|
c-SiO x | 电化学 | NCA||c-SiO x | 58.85% | 85.34% | 61%(1 C, 100圈) | [ |
SiO x | 接触金属锂 | NCM622||SiO x | 68% | 87% | 74%(200圈) | [ |
P/C | Li-Bp/THF 0.41 V (vs. Li/Li+) | P/C||Li | 74% | 94% | — | [ |
SiO x /C | Li-Bp/THF 0.41 V (vs. Li/Li+) | SiO x /C||Li | 75.6% | 90% | ~58%(0.5 C, 400圈) | [ |
Si | Li-Naph/DME 0.35 V (vs. Li/Li+) | Si||Li | 74% | 96.1% | — | [ |
SiO x | Li-Arene <0.2 V (vs. Li/Li+) | NCM532||SiO x | 37.8% | 86.4% | — | [ |
c-Gr/Si | Li-Bp/2-Me-THF 0.08 V (vs. Li/Li+) | NCM622|| c-Gr/Si | 63.2% | 88.3% | 87.3%(250圈) | [ |
Sn | 机械辊压 | LFP||Sn | 21% | 94% | 94.5%(200圈) | [ |
Si-CNT | SLMP | Si-CNT||Li | 58% | 79% | — | [ |
Si | Li@eGF | Si||Li | 79.4% | 100.5% | 56%(0.05 C, 100圈) | [ |
Si | Li x Si-Li2O | Si||Li | 76% | 94% | — | [ |
表2
正极预锂化方案中预锂化试剂的补锂容量以及对电池性能的影响"
补锂试剂 | 容量 | 电池 | 补锂前首圈充电容量 | 添加量/(%,质量分数) | 补锂后首圈充电容量 | 参考文献 |
---|---|---|---|---|---|---|
Li3N | 1399.3 mAh/g (截止电位4.2 V) | LCO||Li | 149.7 mAh/g | 2 | 178.4 mAh/g | [ |
Fe/LiF/Li2O | 550 mAh/g (截止电位4.4 V) | NCM622||Li | 198 mAh/g | 4.8 | 229 mAh/g | [ |
Li2S-PAN | 668 mAh/g (截止电位4.0 V) | LFP||Li | 169 mAh/g | 4.3 | 187 mAh/g | [ |
Co/Li2O | 619 mAh/g (截止电位4.1 V) | LFP||Li | 163 mAh/g | 4.8 | 183 mAh/g | [ |
Li3P/rGO (5:1) | 1289.7 mAh/g (理论) | LFP||Li | 162 mAh/g | 5 | 181.3 mAh/g | [ |
Li5FeO4 | 764 mAh/g (截止电位4.7 V) | NCM523||Li | 190 mAh/g | 7.1 | 233 mAh/g | [ |
NiO/Li2CO3 | 240 mAh/g (截止电位4.5 V) | LMO||Li | 120 mAh/g | 50 | 410 mAh/g | [ |
Li1.62Ni0.5Mn1.5O4 | 截止电位4.55 V | LMO||Li | 145 mAh/g | — | 217 mAh/g | [ |
1 | CABANA J, MONCONDUIT L, LARCHER D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): E170-E192. |
2 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
3 | 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)——负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. |
LUO F, CHU G, HUANG J, et al. Fundamental scientific aspects of lithium batteries(Ⅷ)—Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. | |
4 | 明海, 明军, 邱景义, 等. 预锂化技术在能源存储中的应用[J]. 储能科学与技术, 2017, 6(2): 223-236. |
MING H, MING J, QIU J Y, et al. Applications of pre-lithiation technologies in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. | |
5 | JIN L M, SHEN C, WU Q, et al. Pre-lithiation strategies for next-generation practical lithium-ion batteries[J]. Advanced Science, 2021, 8(12): doi:10.1002/advs.202005031. |
6 | SUN C K, ZHANG X, LI C, et al. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors[J]. Energy Storage Materials, 2020, 32: 497-516. |
7 | ZHAN R M, WANG X C, CHEN Z H, et al. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(35): doi:10.1002/aenm.202101565. |
8 | WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. |
9 | HOLTSTIEGE F, BÄRMANN P, NÖLLE R, et al. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges[J]. Batteries, 2018, 4(1): 4. |
10 | KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters, 2016, 16(1): 282-288. |
11 | ZHOU H T, WANG X H, CHEN D E. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries[J]. ChemSusChem, 2015, 8(16): 2737-2744. |
12 | WATANABE T, TSUDA T, ANDO N, et al. An improved pre-lithiation of graphite anodes using through-holed cathode and anode electrodes in a laminated lithium ion battery[J]. Electrochimica Acta, 2019, 324: doi:10.1016/j.electacta.2019. 134848. |
13 | REZQITA A, KATHRIBAIL A R, KAHR J, et al. Analysis of degradation of Si/Carbon||LiNi0.5Mn0.3Co0.2O2 Full cells: Effect of prelithiation[J]. Journal of the Electrochemical Society, 2019, 166(3): A5483-A5488. |
14 | LIU N, HU L B, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS Nano, 2011, 5(8): 6487-6493. |
15 | BÄRMANN P, DIEHL M, GÖBEL L, et al. Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries[J]. Journal of Power Sources, 2020, 464: doi:10.1016/j.jpowsour.2020.228224. |
16 | MENG Q H, LI G, YUE J P, et al. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32062-32068. |
17 | SHELLIKERI A, WATSON V, ADAMS D, et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. Journal of the Electrochemical Society, 2017, 164(14): A3914-A3924. |
18 | WAN Y X, WANG L J, CHEN Y J, et al. A high-performance tin dioxide@carbon anode with a super high initial coulombic efficiency via a primary cell prelithiation process[J]. Journal of Alloys and Compounds, 2018, 740: 830-835. |
19 | YERSAK T A, SON S B, CHO J S, et al. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode[J]. Journal of the Electrochemical Society, 2013, 160(9): A1497-A1501. |
20 | HUANG S Z, ZHANG L, LIU L F, et al. Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery[J]. Energy Storage Materials, 2018, 12: 23-29. |
21 | WU W, WANG M, WANG J, et al. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(4): 3884-3892. |
22 | RYU J, KANG J, KIM H, et al. Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries[J]. Energy Storage Materials, 2020, 33: 164-172. |
23 | HASSOUN J, KIM J, LEE D J, et al. A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery[J]. Journal of Power Sources, 2012, 202: 308-313. |
24 | REN Y X, ZENG L, ZHAO C, et al. A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer[J]. Energy Storage Materials, 2020, 25: 217-223. |
25 | KIM K H, SHON J, JEONG H, et al. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method[J]. Journal of Power Sources, 2020, 459: doi:10.1016/j.jpowsour.2020.228066. |
26 | SONG B F, DHANABALAN A, BISWAL S L. Evaluating the capacity ratio and prelithiation strategies for extending cyclability in porous silicon composite anodes and lithium iron phosphate cathodes for high capacity lithium-ion batteries[J]. Journal of Energy Storage, 2020, 28: doi:10.1016/j.est.2020.101268. |
27 | YANG Y X, NI C L, GAO M X, et al. Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries[J]. Energy Storage Materials, 2018, 14: 279-288. |
28 | WANG G W, LI F F, LIU D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8699-8703. |
29 | SHEN Y F, ZHANG J M, PU Y F, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery[J]. ACS Energy Letters, 2019, 4(7): 1717-1724. |
30 | MA R J, LIU Y F, HE Y P, et al. Chemical preinsertion of lithium: An approach to improve the intrinsic capacity retention of bulk Si anodes for Li-ion batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(23): 3555-3558. |
31 | YANG Y X, QU X L, ZHANG L C, et al. Reaction-ball-milling-driven surface coating strategy to suppress pulverization of microparticle Si anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20591-20598. |
32 | PANG Y P, WANG X T, SHI X X, et al. Solid-state prelithiation enables high-performance Li-Al-H anode for solid-state batteries[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm. 201902795. |
33 | ALABOINA P K, CHO J S, UDDIN M J, et al. Mechanically prelithiated silicon nano alloy as highly engineered anode material[J]. Electrochimica Acta, 2017, 258: 623-630. |
34 | SCOTT M G, WHITEHEAD A H, OWEN J R. Chemical formation of a solid electrolyte interface on the carbon electrode of a Li-ion cell[J]. Journal of the Electrochemical Society, 1998, 145(5): 1506-1510. |
35 | WANG G W, LI F F, LIU D, et al. High performance lithium-ion and lithium-sulfur batteries using prelithiated phosphorus/carbon composite anode[J]. Energy Storage Materials, 2020, 24: 147-152. |
36 | JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angewandte Chemie International Edition, 2020, 59(34): 14473-14480. |
37 | SHEN Y F, SHEN X H, YANG M, et al. Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode[J]. Advanced Functional Materials, 2021, 31(24): doi:10.1002/adfm.202101181. |
38 | CHOI J, JEONG H, JANG J, et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries[J]. Journal of the American Chemical Society, 2021, 143(24): 9169-9176. |
39 | XU H, LI S, ZHANG C, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(10): 2991-3000. |
40 | YAN M Y, LI G, ZHANG J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27202-27209. |
41 | SHEN Y F, QIAN J F, YANG H X, et al. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): doi:10.1002/smll.201907602. |
42 | TABUCHI T, YASUDA H, YAMACHI M. Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells[J]. Journal of Power Sources, 2005, 146(1/2): 507-509. |
43 | LI F F, WANG G W, ZHENG D, et al. Controlled prelithiation of SnO2/C nanocomposite anodes for building full lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19423-19430. |
44 | HUANG Y M, LIU C, WEI F Y, et al. Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries[J]. Journal of Materials Chemistry A, 2020, 8(36): 18715-18720. |
45 | 陆浩, 李金熠, 刘柏男, 等. 锂离子电池纳米硅碳负极材料研发进展[J]. 储能科学与技术, 2017, 6(5): 864-870. |
LU H, LI J Y, LIU B N, et al. Research and technology progress of nano-Si/C anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 864-870. | |
46 | YU Y, LI S, FAN H M, et al. Optimal annealing of Al foil anode for prelithiation and full-cell cycling in Li-ion battery: The role of grain boundaries in lithiation/delithiation ductility[J]. Nano Energy, 2020, 67: doi:10.1016/j.nanoen.2019.104274. |
47 | FAN H M, LI S, YU Y, et al. Air-stable LixAl foil as free-standing electrode with improved electrochemical ductility by shot-peening treatment[J]. Advanced Functional Materials, 2021, 31(29): doi:10.1002/adfm.202100978. |
48 | XU H, LI S, CHEN X L, et al. Surpassing lithium metal rechargeable batteries with self-supporting Li-Sn-Sb foil anode[J]. Nano Energy, 2020, 74: doi:10.1016/j.nanoen.2020.104815. |
49 | XU H, LI S, CHEN X L, et al. Sn-alloy foil electrode with mechanical prelithiation: Full-cell performance up to 200 cycles[J]. Advanced Energy Materials, 2019, 9(42): doi: 10.1002/aenm. 201902150. |
50 | FAN H M, CHEN B, LI S, et al. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: Electronic percolation and electrochemical cycling stability[J]. Nano Letters, 2020, 20(2): 896-904. |
51 | FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163. |
52 | CHEN H, YANG Y, BOYLE D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, 6: 790-798. |
53 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
54 | LI Y X, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667. |
55 | XIANG B, WANG L, LIU G, et al. Electromechanical probing of Li/Li2CO3 Core/shell particles in a TEM[J]. Journal of the Electrochemical Society, 2013, 160(3): A415-A419. |
56 | HEINE J, RODEHORST U, QI X, et al. Using polyisobutylene as a non-fluorinated binder for coated lithium powder (CLiP) electrodes[J]. Electrochimica Acta, 2014, 138: 288-293. |
57 | Coated lithium powder (CLiP) electrodes for lithium-metal batteries[J]. Advanced Energy Materials, 2014, 4(5): doi:10.1002/aenm.201400406. |
58 | KANG T, WANG Y L, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science, 2019, 5(3): 468-476. |
59 | LI X M, LI Y S, TANG Y F, et al. Air stable lithium microspheres prelithiation reagents for Li-ion batteries synthesized via electroplating[J]. Journal of Power Sources, 2021, 496: doi: 10.1016/j.jpowsour.2021.229868. |
60 | HUANG B, HUANG T, WAN L Y, et al. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 648-657. |
61 | AI G, WANG Z H, ZHAO H, et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources, 2016, 309: 33-41. |
62 | WANG L, FU Y B, BATTAGLIA V S, et al. SBR-PVDF based binder for the application of SLMP in graphite anodes[J]. RSC Advances, 2013, 3(35): 15022. |
63 | SEONG I W, YOON W Y. Electrochemical behavior of a silicon monoxide and Li-powder double layer anode cell[J]. Journal of Power Sources, 2010, 195(18): 6143-6147. |
64 | CAO Z Y, XU P Y, ZHAI H W, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240. |
65 | ZHAO J, LU Z, LIU N, et al. Dry-air-stable lithium silicide–lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nature Communications, 2014, 5: 5088. |
66 | ZHAO J, LU Z D, WANG H T, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(26): 8372-8375. |
67 | ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7408-7413. |
68 | ZHAO J, SUN J, PEI A, et al. A general prelithiation approach for group IV elements and corresponding oxides[J]. Energy Storage Materials, 2018, 10: 275-281. |
69 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): doi:10.1002/aenm.201502534. |
70 | SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: 15008. |
71 | LIU Z Z, MA S B, MU X, et al. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11985-11994. |
72 | WANG X Y, LIU C, ZHANG S J, et al. Dual-functional cathodic prelithiation reagent of Li3P in lithium-ion battery for compensating initial capacity loss and enhancing safety[J]. ACS Applied Energy Materials, 2021, 4(5): 5246-5254. |
73 | SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. |
74 | YANG S Y, YUE X Y, XIA H Y, et al. Battery prelithiation enabled by lithium fixation on cathode[J]. Journal of Power Sources, 2020, 480: doi:10.1016/j.jpowsour.2020.229109. |
75 | ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si-C anode[J]. Journal of Materials Chemistry A, 2018, 6(15): 6206-6211. |
76 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255: 212-219. |
77 | BIE Y T, YANG J, WANG J L, et al. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries[J]. Chemical Communications (Cambridge, England), 2017, 53(59): 8324-8327. |
78 | SUN Y M, LEE H W, ZHENG G Y, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. |
79 | SUN Y M, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): doi:10.1002/aenm. 201600154. |
80 | RAO Z X, WU J Y, HE B, et al. A prelithiation separator for compensating the initial capacity loss of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38194-38201. |
81 | DU J M, WANG W Y, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: Trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. |
82 | ABOUIMRANE A, CUI Y J, CHEN Z H, et al. Enabling high energy density Li-ion batteries through Li2O activation[J]. Nano Energy, 2016, 27: 196-201. |
83 | ZOU K Y, SONG Z R, GAO X, et al. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors[J]. Angewandte Chemie International Edition, 2021, 60(31): 17070-17079. |
84 | FAN L J, TANG D C, WANG D Y, et al. LiCoO2-catalyzed electrochemical oxidation of Li2CO3[J]. Nano Research, 2016, 9(12): 3903-3913. |
85 | SOLCHENBACH S, WETJEN M, PRITZL D, et al. Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells[J]. Journal of the Electrochemical Society, 2018, 165(3): A512-A524. |
86 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. |
87 | WANG R, YU X Q, BAI J M, et al. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes[J]. Journal of Power Sources, 2012, 218: 113-118. |
88 | NOH M, CHO J. Role of Li6CoO4Cathode additive in Li-ion cells containing low coulombic efficiency anode material[J]. Journal of the Electrochemical Society, 2012, 159(8): A1329-A1334. |
89 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. |
90 | PARK K S, IM D, BENAYAD A, et al. LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety[J]. Chemistry of Materials, 2012, 24(14): 2673-2683. |
91 | JEŻOWSKI P, FIC K, CROSNIER O, et al. Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors[J]. Journal of Materials Chemistry A, 2016, 4(32): 12609-12615. |
92 | VITINS G, RAEKELBOOM E A, WELLER M T, et al. Li2CuO2 as an additive for capacity enhancement of lithium ion cells[J]. Journal of Power Sources, 2003, 119/120/121: 938-942. |
93 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. |
94 | DOSE W M, VILLA C, HU X B, et al. Beneficial effect of Li5FeO4 lithium source for Li-ion batteries with a layered NMC cathode and Si anode[J]. Journal of the Electrochemical Society, 2020, 167(16): 160543. |
95 | ARAVINDAN V, NAN S, KEPPELER M, et al. Pre-lithiated LixMn2O4: A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery[J]. Electrochimica Acta, 2016, 208: 225-230. |
96 | DOSE W M, BLAUWKAMP J, PIERNAS-MUÑOZ M J, et al. Liquid ammonia chemical lithiation: An approach for high-energy and high-voltage Si-Graphite|Li1+ xNi0.5Mn1.5O4 Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(7): 5019-5028. |
97 | LIU Y, YANG B C, DONG X L, et al. A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance[J]. Angewandte Chemie International Edition, 2017, 56(52): 16606-16610. |
98 | YANG L Y, YANG K, ZHENG J X, et al. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(14): 4667-4680. |
99 | WANG R, QIAN G Y, LIU T C, et al. Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery[J]. Nano Energy, 2019, 62: 709-717. |
100 | TANG Z F, WANG S, LIAO J Y, et al. Facilitating lithium-ion diffusion in layered cathode materials by introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries[J]. Research (Washington, D C), 2019: doi: 10.34133/2019/2198906. |
101 | LIU X X, LIU T C, WANG R, et al. Prelithiated Li-enriched gradient interphase toward practical high-energy NMC-silicon full cell[J]. ACS Energy Letters, 2021, 6(2): 320-328. |
102 | LIU X X, TAN Y C, WANG W Y, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries[J]. Nano Letters, 2020, 20(6): 4558-4565. |
103 | SONG Z H, FENG K, ZHANG H Z, et al. “Giving comes before receiving”: High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: doi:10.1016/j.nanoen.2019. 104175. |
104 | BETZ J, NOWAK L, WINTER M, et al. An approach for pre-lithiation of Li1+ xNi0.5Mn1.5O4 cathodes mitigating active lithium loss[J]. Journal of the Electrochemical Society, 2019, 166(15): A3531-A3538. |
105 | PERAMUNAGE D, ABRAHAM K M. Preparation and electrochemical characterization of overlithiated spinel LiMn2O4[J]. Journal of the Electrochemical Society, 1998, 145(4): 1131-1136. |
106 | TARASCON J M, GUYOMARD D. Li metal-free rechargeable batteries based on Li1+ xMn2O4 cathodes (0 ≤x≤ 1) and carbon anodes[J]. Journal of the Electrochemical Society, 1991, 138(10): 2864-2868. |
107 | MANCINI M, AXMANN P, GABRIELLI G, et al. A high-voltage and high-capacity Li1+ xNi0.5Mn1.5O4 cathode material: From synthesis to full lithium-ion cells[J]. ChemSusChem, 2016, 9(14): 1843-1849. |
108 | MOORHEAD-ROSENBERG Z, ALLCORN E, MANTHIRAM A. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwave-assisted chemical lithiation process[J]. Chemistry of Materials, 2014, 26(20): 5905-5913. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[10] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[11] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||