储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1368-1382.doi: 10.19799/j.cnki.2095-4239.2021.0513
魏超超1,2(), 余创1(), 吴仲楷1,2, 彭林峰1,3, 程时杰1, 谢佳1()
收稿日期:
2021-10-08
修回日期:
2021-11-08
出版日期:
2022-05-05
发布日期:
2022-05-07
通讯作者:
余创,谢佳
E-mail:weichaochao@hust.edu.cn;cyu2020@hust.edu.cn;xiejia@hust.edu.cn
作者简介:
魏超超(1994—),男,博士研究生,研究方向为固态电池与固态电解质,E-mail:weichaochao@hust.edu.cn;
基金资助:
Chaochao WEI1,2(), Chuang YU1(), Zhongkai WU1,2, Linfeng PENG1,3, Shijie CHENG1, Jia XIE1()
Received:
2021-10-08
Revised:
2021-11-08
Online:
2022-05-05
Published:
2022-05-07
Contact:
Chuang YU, Jia XIE
E-mail:weichaochao@hust.edu.cn;cyu2020@hust.edu.cn;xiejia@hust.edu.cn
摘要:
全固态锂电池因其高安全性和高能量密度成为最有望替代传统液态锂电池的体系之一。固态电解质是全固态锂电池的核心组成部分,其中硫化物电解质因其高离子电导率、良好的机械延展性等优势成为最具潜力的固态电解质之一。Li3PS4固态电解质具有高离子电导率、宽电化学窗口、低成本等优势,是极具代表的硫化物固态电解质,也是近年来研究较多的硫化物固态电解质,然而其空气/水汽稳定性差、与正负极材料的兼容性较差等缺点限制了其在高性能全固态锂电池中的大规模应用。本文通过对近期Li3PS4固态电解质等相关文献的探讨,综述了Li3PS4固态电解质的结构机理和制备路线,总结并分析了Li3PS4固态电解质在提高离子电导率、改善化学/电化学稳定性、强化力学性能等方面采取的策略及研究进展,最后归纳了近年来基于Li3PS4固态电解质和各种正负极材料构筑的高性能全固态电池。基于以上的分析,本文也指出了当前Li3PS4固态电解质仍存在的不足并展望了Li3PS4等硫化物电解质在未来的研究重点及发展方向。
中图分类号:
魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382.
Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382.
表2
Li3PS4 电解质掺杂后离子电导率"
Composition | Conductivity(RT)/(S/cm) | Ref. |
---|---|---|
β-Li3PS4 | 1.60×10-4 | [ |
Li3.06P0.98Zn0.02S3.98O0.02 | 1.12×10-3 | [ |
75Li2S·(23)P2S5-2P2O5 | 2.53×10-4 | [ |
75Li2S·23P2S5-2P2Se5 | 6.00×10-4 | [ |
90Li3PS4-10LLZO 98Li3PS4-2Al2O3 98Li3PS4-2SiO2 86.9Li3PS4-13.1LiAlS2 2Li3PS4-LiI | 2.40×10-4 2.28×10-4 1.84×10-4 6.00×10-4 6.30×10-4 | [ [ [ [ [ |
1 | OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Advanced Energy Materials, 2019, 9(16): 1802927. |
2 | TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8: 6214. |
3 | 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-341. |
XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341. | |
4 | ITO Y, SAKUDA A, OHTOMO T, et al. Li4GeS4-Li3PS4 electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition[J]. Journal of the Ceramic Society of Japan, 2014, 122(1425): 341-345. |
5 | HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80. |
6 | PENG L F, REN H T, ZHANG J Z, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures[J]. Energy Storage Materials, 2021, 43: 53-61. |
7 | TAKEUCHI T, KOJIMA T, KAGEYAMA H, et al. All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency[J]. Energy Technology, 2019, 7(12): 1900509. |
8 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
9 | WEI X Y, DUWARD F S, et al. Highly conductive polymer electrolytes containing rigid polymers[J]. Chemistry of Materials, 10(9): 2307-2308. |
10 | REN H T, ZHANG Z Q, ZHANG J Z, et al. Improvement of stability and solid-state battery performances of annealed 70Li2S-30P2S5 electrolytes by additives[J]. Rare Metals, 2022, 41(1): 106-114. |
11 | LI J, CHEN H W, SHEN Y B, et al. Covalent interfacial coupling for hybrid solid-state Li ion conductor[J]. Energy Storage Materials, 2019, 23: 277-283. |
12 | LIU X Z, DING L, LIU Y Z, et al. Room-temperature ionic conductivity of Ba, Y, Al co-doped Li7La3Zr2O12 solid electrolyte after sintering[J]. Rare Metals, 2021, 40(8): 2301-2306. |
13 | PENG L F, YU C, ZHANG Z Q, et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability[J]. Chemical Engineering Journal, 2022, 430: 132896. |
14 | 许阳阳, 李全国, 梁成都, 等. 硫化物固体电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 649-658. |
XU Y Y, LI Q G, LIANG C D, et al. Research progress of solid electrolytes[J]. Energy Storage Science and Technology, 2016, 5(5): 649-658. | |
15 | JIN Y M, LIU C J, JIA Z G, et al. Building a highly functional Li1.3Al0.3Ti1.7(PO4)3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2021, 874: 159890. |
16 | LI Y B, SUN Y M, PEI A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Central Science, 2018, 4(1): 97-104. |
17 | YANG S P. An enhanced Li3AlH6 anode prepared by a solid-state ion exchange method for use in a solid-state lithium-ion battery[J]. International Journal of Electrochemical Science, 2020: 9487-9498. |
18 | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075. |
19 | ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. J Am Chem Soc, 2019, 141 (48): 19002-19013. |
20 | ZHANG Y B, CHEN R J, LIU T, et al. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10029-10035. |
21 | ATARASHI A, TSUKASAKI H, OTOYAMA M, et al. Ex situ investigation of exothermal behavior and structural changes of the Li3PS4-LiNi1/3Mn1/3Co1/3O2 electrode composites[J]. Solid State Ionics, 2019, 342: 115046. |
22 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
WU J H, YAO X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
23 | LU S T, KOSAKA F, SHIOTANI S, et al. Optimization of lithium ion conductivity of Li2S-P2S5 glass ceramics by microstructural control of crystallization kinetics[J]. Solid State Ionics, 2021, 362: 115583. |
24 | LIU Z Q, TANG Y F, WANG Y M, et al. High performance Li2S-P2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources, 2014, 260: 264-267. |
25 | TOKUDA Y, UCHINO T, YOKO T. Ab initio study of NMR spectra of Li2S-SiS2 glass system[J]. Journal of Non-Crystalline Solids, 2003, 330(1/2/3): 61-65. |
26 | ZHAO R, HU G T, KMIEC S, et al. New amorphous oxy-sulfide solid electrolyte material: Anion exchange, electrochemical properties, and lithium dendrite suppression via in situ interfacial modification[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26841-26852. |
27 | ITOH K, SONOBE M, MORI K, et al. Structural observation of Li2S-GeS2 superionic glasses[J]. Physica B: Condensed Matter, 2006, 385/386: 520-522. |
28 | ITO Y, SAKUDA A, OHTOMO T, et al. Preparation of Li2S-GeS2 solid electrolyte thin films using pulsed laser deposition[J]. Solid State Ionics, 2013, 236: 1-4. |
29 | WANG C, LIANG J, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design[J]. Energ Environ Sci, 2021, 14 (5): 2577-2619. |
30 | WANG Z X, JIANG Y, WU J, et al. Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte[J]. Chemical Engineering Journal, 2020, 393: 124706. |
31 | GARCIA-MENDEZ R, MIZUNO F, ZHANG R G, et al. Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior[J]. Electrochimica Acta, 2017, 237: 144-151. |
32 | HOMMA K, YONEMURA M, NAGAO M, et al. Crystal structure of high-temperature phase of lithium ionic conductor, Li3PS4[J]. Journal of the Physical Society of Japan, 2010, 79(Suppl.A): 90-93. |
33 | HOMMA K, YONEMURA M, KOBAYASHI T, et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J]. Solid State Ionics, 2011, 182(1): 53-58. |
34 | HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications, 2003, 5(2): 111-114. |
35 | MERCIER R, MALUGANI J P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5: 663-666. |
36 | KENNEDY J H. Ionically conductive glasses based on SiS2[J]. Materials Chemistry and Physics, 1989, 23(1/2): 29-50. |
37 | HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479. |
38 | TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4[J]. Solid State Ionics, 1984, 14(3): 181-185. |
39 | KATO A, SUYAMA M, HOTEHAMA C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9): A1950-A1954. |
40 | TATSUMISAGO M, NAGAO M, HAYASHI A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1(1): 17-25. |
41 | TERAGAWA S, ASO K, TADANAGA K, et al. Preparation of Li2S-P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery[J]. Journal of Power Sources, 2014, 248: 939-942. |
42 | TERAGAWA S, ASO K, TADANAGA K, et al. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(14): 5095. |
43 | GAMO H, NAGAI A, MATSUDA A, et al. The effect of solvent on reactivity of the Li2S-P2S5 system in liquid-phase synthesis of Li7P3S11 solid electrolyte[J]. Sci Rep-Uk, 2021, 11 (1):21097-21102. |
44 | PHUC N H H, TOTANI M, MORIKAWA K, et al. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium[J]. Solid State Ionics, 2016, 288: 240-243. |
45 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
46 | PHUC N H H, MUTO H, MATSUDA A. Fast preparation of Li3PS4 solid electrolyte using methyl propionate as synthesis medium[J]. Materials Today: Proceedings, 2019, 16: 216-219. |
47 | ARNOLD W, BUCHBERGER D A, LI Y, et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors[J]. Journal of Power Sources, 2020, 464: 228158. |
48 | YUBUCHI S, UEMATSU M, HOTEHAMA C, et al. An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol[J]. Journal of Materials Chemistry A, 2019, 7(2): 558-566. |
49 | CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. ChemSusChem, 2017, 10(12): 2605-2611. |
50 | ITO A, KIMURA T, SAKUDA A, et al. Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 2-7. |
51 | YAMAMOTO K, TAKAHASHI M, OHARA K, et al. Synthesis of sulfide solid electrolytes through the liquid phase: Optimization of the preparation conditions[J]. ACS Omega, 2020, 5(40): 26287-26294. |
52 | SUTO K, BONNICK P, NAGAI E, et al. Microwave-aided synthesis of lithium thiophosphate solid electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(43): 21261-21265. |
53 | WANG X L, XIAO R J, LI H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(31): 21269-21277. |
54 | LIU G Z, XIE D J, WANG X L, et al. High air-stability and superior lithium ion conduction of Li3+3 xP1- xZnxS4- xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274. |
55 | KIM J, YOON Y, EOM M, et al. Characterization of amorphous and crystalline Li2S-P2S5-P2Se5 solid electrolytes for all-solid-state lithium ion batteries[J]. Solid State Ionics, 2012, 225: 626-630. |
56 | LI J Y, LIU W M, ZHANG X F, et al. Heat treatment effects in oxygen-doped β-Li3PS4 solid electrolyte prepared by wet chemistry method[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 1259-1269. |
57 | HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80. |
58 | OOURA Y, MACHIDA N, NAITO M, et al. Electrochemical properties of the amorphous solid electrolytes in the system Li2S-Al2S3-P2S5[J]. Solid State Ionics, 2012, 225: 350-353. |
59 | RANGASAMY E, LIU Z C, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387. |
60 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): 742-746. |
61 | LIU G Z, XIE D J, WANG X L, et al. High air-stability and superior lithium ion conduction of Li3+3 xP1- xZnxS4- xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274. |
62 | XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5glass-ceramic electrolyte by MoS2doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
63 | XIE D J, CHEN S J, ZHANG Z H, et al. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389: 140-147. |
64 | CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, 22: 100918. |
65 | OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling[J]. Journal of Non-Crystalline Solids, 2013, 364: 57-61. |
66 | HAYASHI A, MURAMATSU H, OHTOMO T, et al. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1(21): 6320. |
67 | KIMURA T, KATO A, HOTEHAMA C, et al. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2019, 333: 45-49. |
68 | TAO Y C, CHEN S J, LIU D, et al. Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells[J]. Journal of the Electrochemical Society, 2015, 163(2): A96-A101. |
69 | FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12): eaau9245. |
70 | MATSUDA R, HIRAHARA E, PHUC N H H, et al. Preparation of LiNi1/3Mn1/3Co1/3O2/Li3PS4 cathode composite particles using a new liquid-phase process and application to all-solid-state lithium batteries[J]. Journal of the Ceramic Society of Japan, 2018, 126(10): 826-831. |
71 | HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255. |
72 | OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18(17): 2226-2229. |
73 | OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490. |
74 | SAKUDA A, KITAURA H, HAYASHI A, et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses[J]. Electrochemical and Solid-State Letters, 2008, 11(1): A1. |
75 | KIM A Y, STRAUSS F, BARTSCH T, et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries[J]. Chemistry of Materials, 2019, 31(23): 9664-9672. |
76 | CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
77 | HAYASHI A, SAKUDA A, TATSUMISAGO M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries[J]. Frontiers in Energy Research, 2016, 4: 25. |
78 | ZHANG B H, LIU Y L, LIU J, et al. "Polymer-in-ceramic" based poly(Ɛ-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 52: 318-325. |
79 | ZHANG S N, ZENG Z, ZHAI W, et al. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(10): 2100072. |
80 | CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80. |
81 | KATO A, YAMAMOTO M, SAKUDA A, et al. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1002-1007. |
82 | YUE J, HUANG Y L, LIU S F, et al. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36066-36071. |
83 | XIAO Y, YAMAMOTO K, MATSUI Y, et al. Comparison of sulfur cathode reactions between a concentrated liquid electrolyte system and a solid-state electrolyte system by soft X-ray absorption spectroscopy[J]. ACS Applied Energy Materials, 2021, 4(1): 186-193. |
84 | WU D S, ZHOU G M, MAO E Y, et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes[J]. Nano Research, 2020, 13(5): 1383-1388. |
85 | YANG H L, ZHANG B W, WANG Y X, et al. Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M=Li, Na, K) sulfur batteries[J]. Advanced Energy Materials, 2020, 10(37): 2001764. |
86 | 苗力孝, 王维坤, 王梦佳, 等. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875. |
MIAO L X, WANG W K, WANG M J, et al. Sulfur composite cathode for lithium-sulfur batteries[J]. Progress in Chemistry, 2013, 25(11): 1867-1875. | |
87 | JIN C B, ZHANG W K, ZHUANG Z Z, et al. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(2): 632-640. |
88 | KINOSHITA S, OKUDA K, MACHIDA N, et al. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials[J]. Solid State Ionics, 2014, 256: 97-102. |
89 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. |
90 | MATSUYAMA T, HAYASHI A, HART C J, et al. Amorphous TiS3/S/C composite positive electrodes with high capacity for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2016, 163(8): A1730-A1735. |
91 | YE H L, MA L, ZHOU Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13091-13096. |
92 | CUI T Y, XIAO Z H, WANG Z B, et al. FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model[J]. Environmental Pollution, 2021, 282: 117023. |
93 | PAN M Y, HAKARI T, SAKUDA A, et al. Electrochemical properties of all-solid-state lithium batteries with amorphous FeSx-based composite positive electrodes prepared via mechanochemistry[J]. Electrochemistry, 2018, 86(4): 175-178. |
94 | FENG L W, LIU Y, WU L, et al. Surface modification with oxygen vacancy in LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 881: 160626. |
95 | XIE Z C, ZHANG Y Y, MIN X Q, et al. One-step bulk and surface co-modification of LiNi0.8Co0.15Al0.05O2 cathode material towards excellent long-term cyclability[J]. Electrochimica Acta, 2021, 379: 138124. |
96 | MACHIDA N, KASHIWAGI J, NAITO M, et al. Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials[J]. Solid State Ionics, 2012, 225: 354-358. |
97 | KIM A Y, STRAUSS F, BARTSCH T, et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries[J]. Chemistry of Materials, 2019, 31(23): 9664-9672. |
98 | STRAUSS F, BARTSCH T, DE BIASI L, et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries[J]. ACS Energy Letters, 2018, 3(4): 992-996. |
99 | HAN L J, WEI Q H, CHEN H M, et al. Open-framework germanates derived GeO2/C nanocomposite as a long-life and high-capacity anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 881: 160533. |
100 | ZHANG Y C, CHEN M Y, CHEN Z Y, et al. Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag[J]. Journal of Alloys and Compounds, 2021, 876: 160125. |
101 | OKUNO R, YAMAMOTO M, TERAUCHI Y, et al. Stable cyclability of porous Si anode applied for sulfide-based all-solid-state batteries[J]. Energy Procedia, 2019, 156: 183-186. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[3] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[4] | 苏月, 刘旭华, 曾芳磊, 任玉荣, 林本才. 聚偏氟乙烯/聚偏氟乙烯磺酸锂/锂盐复合固态电解质的制备及其性能[J]. 储能科学与技术, 2021, 10(6): 2069-2076. |
[5] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[6] | 苏少鹏, 李进, 张佃平, 李严, 席文, 李杨. 红柳基锂电池负极材料的制备及电化学性能[J]. 储能科学与技术, 2021, 10(6): 2082-2089. |
[7] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[8] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[9] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[10] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[11] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[12] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[13] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. |
[14] | 王瑨, 王建全, 阮殿波, 谢皎, 杨斌. 硅/活性炭复合材料的制备及其电化学性能[J]. 储能科学与技术, 2021, 10(1): 104-110. |
[15] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||