1 |
ZHANG X, WANG S, XUE C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11): doi: 10.1002/adma.201806082.
|
2 |
QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540.
|
3 |
ZHANG Q Q, LIU K, DING F, et al. Recent advances in solid polymer electrolytes for lithium batteries[J]. Nano Research, 2017, 10(12): 4139-4174.
|
4 |
WANG H, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215.
|
5 |
MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781.
|
6 |
THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727.
|
7 |
RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411.
|
8 |
AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052.
|
9 |
WOLFENSTINE J, RANGASAMY E, ALLEN J L, et al. High conductivity of dense tetragonal Li7La3Zr2O12[J]. Journal of Power Sources, 2012, 208: 193-196.
|
10 |
RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12[J]. Solid State Ionics, 2012, 206: 28-32.
|
11 |
LI Y, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
|
12 |
SONG S, SHEPTYAKOV D, KORSUNSKY A M, et al. High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions[J]. Materials & Design, 2016, 93: 232-237.
|
13 |
DENG F, WU Y, TANG W, et al. Conformal, nanoscale gamma-Al2O3 coating of garnet conductors for solid-state lithium batteries[J]. Solid State Ionics, 2019, 342: doi: 10.1016/j.ssi.2019.115063.
|
14 |
SONG S, WU Y, DONG Z, et al. Multi-substituted garnet-type electrolytes for solid-state lithium batteries[J]. Ceramics International, 2020, 46(4): 5489-5494.
|
15 |
ZHENG J, DANG H, FENG X, et al. Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether[J]. Journal of Materials Chemistry A, 2017, 5(35): 18457-18463.
|
16 |
FU K K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099.
|
17 |
LI Y, ZHANG W, DOU Q Q, et al. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3391-3398.
|
18 |
YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780.
|
19 |
KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes via the co-precipitation method[J]. Journal of Asian Ceramic Societies, 2019, 7(4): 551-557.
|
20 |
ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187.
|
21 |
LIU K, WU M, JIANG H, et al. An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(36): 18802-18809.
|
22 |
ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
|
23 |
XU D, SU J, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9 (25): doi: 10.1002/aenm.201900611.
|
24 |
YANG X, SUN Q, ZHAO C, et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes[J]. Nano Energy, 2019, 61: 567-575.
|
25 |
WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): doi: 10.1002/adfm.201805301.
|
26 |
CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184.
|
27 |
LI W W, SUN C Z, JIN J, et al. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(48): 27304-27312.
|
28 |
ZHU L, ZHU P, FANG Q, et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery[J]. Electrochimica Acta, 2018, 292: 718-726.
|
29 |
SONG S, WU Y, TANG W, et al. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide)[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7163-7170.
|
30 |
WANG X, ZHANG Y, ZHANG X, et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24791-24798.
|
31 |
SAPTIAMA I, KANETI Y V, SUZUKI Y, et al. Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption[J]. Small, 2018, 14(21): doi: 10.1002/smll.201800474.
|
32 |
MA F X, HU H, WU H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties[J]. Advanced Materials, 2015, 27(27): 4097-4101.
|
33 |
SEPTIANI N L W, KANETI Y V, FATHONI K B, et al. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors[J]. Nano Energy, 2020, 67: doi: 10.1016/j.nanoen.2019.104270.
|
34 |
SHEN L, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7694.
|
35 |
LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791.
|