| 1 | 曹林, 李泓, 孙传灏, 等. 锂电池术语(草案)[J]. 储能科学与技术, 2018, 7(1): 148-153. | 
																													
																						|  | CAO L, LI H, SUN C H, et al. Lithium battery terminology[J]. Energy Storage Science and Technology, 2018, 7(1): 148-153. | 
																													
																						| 2 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. | 
																													
																						|  | LI H. All solid lithium batteries: Dreams come true[J]. Energy Storage Science and Technology, 2018, 7(2):188-193. | 
																													
																						| 3 | 张永龙, 夏会玲, 林久, 等. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6): 994-1002. | 
																													
																						|  | ZHANG Y L, XIA H L, LIN J, et al. Brief analysis the safety of solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 994-1002. | 
																													
																						| 4 | 陈立泉. 四十年固态锂电池——回顾与展望[J]. 储能科学与技术, 2016, 6(5): 605-606. | 
																													
																						|  | CHEN L Q. Solid-state lithium batteries for 40 years: Review and prospect[J]. Energy Storage Science and Technology, 2016, 6(5): 605-606. | 
																													
																						| 5 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. | 
																													
																						|  | ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. | 
																													
																						| 6 | 田孟羽, 季洪祥, 田丰, 等. 锂电池百篇论文点评(2019.10.01—2019.11.30)[J]. 储能科学与技术, 2020, 9(1): 11-23. | 
																													
																						|  | TIAN M Y, JI H X, TIAN F, et al. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2019 to Nov. 30, 2019)[J]. Energy Storage Science and Technology, 2020, 9(1): 11-23. | 
																													
																						| 7 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. | 
																													
																						| 8 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. | 
																													
																						| 9 | KRAFT M A, CULVER S P, CALDERÓN C, MARIO, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I)[J]. Journal of the American Chemical Society, 2017, 139(31): 10909-10918. | 
																													
																						| 10 | MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. | 
																													
																						| 11 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy. 2016.30. | 
																													
																						| 12 | PARK K, BAI Q, KIM D, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.1-1800035.24. | 
																													
																						| 13 | YANG Y , ZHENG G , CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. | 
																													
																						| 14 | MANTHIRAM, ARUMUGAM, YONG Z, et al. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. | 
																													
																						| 15 | 刘丽露, 吴凡, 李泓, 等. 硫化物固态电解质电化学稳定性研究进展[J]. 硅酸盐学报, 2019, 47(10): 31-49. | 
																													
																						|  | LIU L L, WU F, LI H, et al. Advances in electrochemical stability of sulfide solid-state electrolyte[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 31-49. | 
																													
																						| 16 | KOERVER R, ISABEL A, THOMAS L, et al. Capacity fade in solid-state batteries: interphase formation and chemo mechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry Material, 2017, 29: 5574-5582. | 
																													
																						| 17 | KOERVER R, ZHANG W, BIASI L D, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries[J]. Energy Environment Science, 2018, 11: doi: 10.1039/C8EE00907D. | 
																													
																						| 18 | 吕璐, 周雷, MUHAMMAD K, 等. 高离子电导率硫化物固态电解质的空气稳定性研究进展[J]. 中国科学: 化学, 2020, 8(10): 1-14. | 
																													
																						|  | LYU L, ZHOU L, MUHAMMAD K, et al. Research progress on air stability of high ionic conductivity sulfide solid electrolyte[J]. Science China: Chemistry, 2020, 8(10):1-14. | 
																													
																						| 19 | MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(10): 116-119. | 
																													
																						| 20 | AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Material Interfaces, 2020, 12(19): 21548-21558. | 
																													
																						| 21 | LIANG J, CHEN N, LI X, et al. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chemistry of Materials, 2020, 47(32): 2664-2672. | 
																													
																						| 22 | WANG M, PENG Z, LUO W, et al. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide[J]. Advanced Science, 2020, 7(13): 2000237.1-2000237.9. | 
																													
																						| 23 | WU F, FITZHUGH W, YE L, et al. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nature Communication, 2018, 9(1): 4037.1-4037.11. | 
																													
																						| 24 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. | 
																													
																						| 25 | HAN T X, HUAN R Z, JUN M, et al. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes[J]. ACS Energy Letter, 2019, 4(12): 2871-2886. | 
																													
																						| 26 | GUANG L C, et al. Reasonable design of high-energy-density solid-state lithium-metal batteries[J]. Matter, 2020, 2(4): 805-815. | 
																													
																						| 27 | LONG C, WEN X L, LI Z F, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047-1901057. | 
																													
																						| 28 | TAO L J, P G H, GUO X W, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2020, 10(12): 1903376-1903385. | 
																													
																						| 29 | JEON Y M, KIM S , LEE M, et al. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation[J]. Advanced Energy Materials, 2020, 10(47): 2003114.1-2003114.10. |