1 |
曹林, 李泓, 孙传灏, 等. 锂电池术语(草案)[J]. 储能科学与技术, 2018, 7(1): 148-153.
|
|
CAO L, LI H, SUN C H, et al. Lithium battery terminology[J]. Energy Storage Science and Technology, 2018, 7(1): 148-153.
|
2 |
李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193.
|
|
LI H. All solid lithium batteries: Dreams come true[J]. Energy Storage Science and Technology, 2018, 7(2):188-193.
|
3 |
张永龙, 夏会玲, 林久, 等. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6): 994-1002.
|
|
ZHANG Y L, XIA H L, LIN J, et al. Brief analysis the safety of solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 994-1002.
|
4 |
陈立泉. 四十年固态锂电池——回顾与展望[J]. 储能科学与技术, 2016, 6(5): 605-606.
|
|
CHEN L Q. Solid-state lithium batteries for 40 years: Review and prospect[J]. Energy Storage Science and Technology, 2016, 6(5): 605-606.
|
5 |
张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394.
|
|
ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394.
|
6 |
田孟羽, 季洪祥, 田丰, 等. 锂电池百篇论文点评(2019.10.01—2019.11.30)[J]. 储能科学与技术, 2020, 9(1): 11-23.
|
|
TIAN M Y, JI H X, TIAN F, et al. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2019 to Nov. 30, 2019)[J]. Energy Storage Science and Technology, 2020, 9(1): 11-23.
|
7 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
8 |
KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
|
9 |
KRAFT M A, CULVER S P, CALDERÓN C, MARIO, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I)[J]. Journal of the American Chemical Society, 2017, 139(31): 10909-10918.
|
10 |
MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921.
|
11 |
KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy. 2016.30.
|
12 |
PARK K, BAI Q, KIM D, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.1-1800035.24.
|
13 |
YANG Y , ZHENG G , CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032.
|
14 |
MANTHIRAM, ARUMUGAM, YONG Z, et al. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
|
15 |
刘丽露, 吴凡, 李泓, 等. 硫化物固态电解质电化学稳定性研究进展[J]. 硅酸盐学报, 2019, 47(10): 31-49.
|
|
LIU L L, WU F, LI H, et al. Advances in electrochemical stability of sulfide solid-state electrolyte[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 31-49.
|
16 |
KOERVER R, ISABEL A, THOMAS L, et al. Capacity fade in solid-state batteries: interphase formation and chemo mechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry Material, 2017, 29: 5574-5582.
|
17 |
KOERVER R, ZHANG W, BIASI L D, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries[J]. Energy Environment Science, 2018, 11: doi: 10.1039/C8EE00907D.
|
18 |
吕璐, 周雷, MUHAMMAD K, 等. 高离子电导率硫化物固态电解质的空气稳定性研究进展[J]. 中国科学: 化学, 2020, 8(10): 1-14.
|
|
LYU L, ZHOU L, MUHAMMAD K, et al. Research progress on air stability of high ionic conductivity sulfide solid electrolyte[J]. Science China: Chemistry, 2020, 8(10):1-14.
|
19 |
MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(10): 116-119.
|
20 |
AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Material Interfaces, 2020, 12(19): 21548-21558.
|
21 |
LIANG J, CHEN N, LI X, et al. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chemistry of Materials, 2020, 47(32): 2664-2672.
|
22 |
WANG M, PENG Z, LUO W, et al. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide[J]. Advanced Science, 2020, 7(13): 2000237.1-2000237.9.
|
23 |
WU F, FITZHUGH W, YE L, et al. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nature Communication, 2018, 9(1): 4037.1-4037.11.
|
24 |
HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508.
|
25 |
HAN T X, HUAN R Z, JUN M, et al. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes[J]. ACS Energy Letter, 2019, 4(12): 2871-2886.
|
26 |
GUANG L C, et al. Reasonable design of high-energy-density solid-state lithium-metal batteries[J]. Matter, 2020, 2(4): 805-815.
|
27 |
LONG C, WEN X L, LI Z F, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047-1901057.
|
28 |
TAO L J, P G H, GUO X W, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2020, 10(12): 1903376-1903385.
|
29 |
JEON Y M, KIM S , LEE M, et al. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation[J]. Advanced Energy Materials, 2020, 10(47): 2003114.1-2003114.10.
|