1 |
WANG C Y, XIA K L, WANG H M, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials, 2019, 31(9): doi: 10.1002/adma.201801072.
|
2 |
SHI W, GUO Y L, LIU Y Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201901493.
|
3 |
SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020, 32(5): doi: 10.1002/adma.201901958.
|
4 |
MA Y J, ZHANG Y C, CAI S S, et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201902062.
|
5 |
LI P, ZHANG Y K, ZHENG Z J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902987.
|
6 |
CHEN D, PEI Q B. Electronic muscles and skins: A review of soft sensors and actuators[J]. Chemical Reviews, 2017, 117(17): 11239-11268.
|
7 |
ROOT S E, SAVAGATRUP S, PRINTZ A D, et al. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics[J]. Chemical Reviews, 2017, 117(9): 6467-6499.
|
8 |
LIU K, YAO Y, LYU T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355-227362.
|
9 |
HU R F, WANG Y H, ZHAO J, et al. Fabrication of stretchable multi-element composite for flexible solid-state electrochemical capacitor application[J]. Chemical Engineering Science, 2018, 361: 109-116.
|
10 |
TIAN B B, ZHENG J, ZHAO C X, et al. Correction: Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(20): 9997-10003.
|
11 |
CHEN X, VILLA N S, ZHUANG Y F, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201902769.
|
12 |
邵光伟, 郭珊珊, 于瑞, 等. 可拉伸超级电容器的研究进展: 电极、电解质和器件[J]. 物理学报, 2020, 69(17): 149-168.SHAO G W, GUO S S, YU R, et al. Stretchable supercapacitors: Electrodes, electrolytes, and devices[J]. Acta Physica Sinica, 2020, 69(17): 149-168.
|
13 |
SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280.
|
14 |
WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4338.
|
15 |
CAO J Y, LI X D, WANG Y M, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674.
|
16 |
WANG X, YAN C Y, YAN J, et al. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device[J]. Nano Energy, 2015, 11: 765-773.
|
17 |
刘云鹏, 李雪, 韩颖慧, 等. 锂离子超级电容器电极材料研究进展[J]. 高电压技术, 2018, 44(4): 1140-1148.LIU Y P, LI X, HAN Y H, et al. Research progress in electrode materials for lithium-ion supercapacitor[J]. High Voltage Engineering, 2018, 44(4): 1140-1148.
|
18 |
WASEEM R, FAIZAN A, NADEEM R, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52(5): 441-473.
|
19 |
GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7: 538-551.
|
20 |
PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288.
|
21 |
陈斌, 吕彦伯, 谌可炜, 等. 固态超级电容器电解质的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939.CHEN B, LYU Y B, CHEN K W, et al. Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939.
|
22 |
CHOI J, GHAFFARI R, BAKER L B, et al. Skin-interfaced systems for sweat collection and analytics[J]. Science Advances, 2018, 4(2): 3921-3931.
|
23 |
侯朝霞, 王凯, 屈晨滢, 等. 凝胶聚合物电解质在二次电池的研究进展[J]. 功能材料, 2020, 51(10): 10060-10068.HOU Z X, WANG K, QU C Y, et al. Research progress of gel polymer electrolytes in secondary batteries[J]. Journal of Functional Materials, 2020, 51(10): 10060-10068.
|
24 |
ZHONG C, DENG Y D, HU W B, et al. Electrolytes for Electrochemical Supercapacitors[M]. Boca Raton, USA: CRC Press, 2016.
|
25 |
YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37977-37985.
|
26 |
WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie, 2019, 58(44): 15707-15711.
|
27 |
FANG L, CAI Z F, DING Z Q, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21895-21903.
|
28 |
LIU J, HUANG J W, CAI Q P, et al. Design of slidable polymer networks: A rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20479-20489.
|
29 |
SHI Y H, ZHANG Y, JIA L M, et al. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36028-36036.
|
30 |
ZHANG H H, LI J Y, GU C, et al. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes[J]. Journal of Power Sources, 2016, 332: 413-419.
|
31 |
ZHANG B, LI J H, LIU F, et al. Self-healable polyelectrolytes with mechanical enhancement for flexible and durable supercapacitors[J]. Chemistry—A European Journal. 2019, 25(50): 11715-11724.
|
32 |
LEE G, KIM J W, PARK H, et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte[J]. ACS Nano, 2019, 13(1): 855-866.
|
33 |
ROGERS R D, VOTH G A. Ionic liquids[J]. Accounts of Chemical Research, 2007, 40(11): 1077-1078.
|
34 |
LIU X H, WEN Z B, WU D B, et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(30):11569-11573.
|
35 |
KIM W. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes[J]. Nanotechnology, 2016, 27(22): doi: 10.1088/0957-4484/27/22/225402.
|
36 |
WANG H X, DAI L X, CHAI D X, et al. Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface[J]. Journal of Colloid and Interface Science, 2019, 56: 629-637.
|
37 |
CHEN C R, QIN H, CONG H P, et al. A highly stretchable and real-time healable supercapacitor[J]. Advanced Materials, 2019, 31(19): doi: 10.1002/adma.201900573.
|
38 |
YOON J, LEE J, HUR J. Stretchable supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain[J]. Nanomaterials, 2018, 8(7): 8070541-8070555.
|
39 |
WU C Y, TANG X, GAN L, et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20535-20544.
|
40 |
ZHAO C, JIA X T, SHU K W, et al. Stretchability enhancement of buckled polypyrrole electrodes for stretchable supercapacitors via engineering substrate surface roughness[J]. Electrochimica Acta, 2020, 343: 136099-136109.
|
41 |
CHU X, ZHANG H T, SU H, et al. A novel stretchable supercapacitor electrode with high linear capacitance[J]. Chemical Engineering Journal, 2018, 349: 168-175.
|
42 |
SHANG Y Y, WANG C H, HE X D, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12: 401-409.
|
43 |
XIE Y Z, LIU Y, ZHAO Y D, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode[J]. Journal of Materials Chemistry A, 2014, 2(24): 9142-9149.
|
44 |
HUANG Y, TAO J Y, MENG W J, et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability[J]. Nano Energy, 2015, 11: 518-525.
|
45 |
YUN T G, HWANG B I, KIM D, et al. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9228-9234.
|
46 |
YUN J, SONG C, LEE H, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor[J]. Nano Energy, 2018, 49: 644-654.
|
47 |
LYU Z S, LUO Y F, TANG Y X, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J]. Advanced Materials, 2018, 30(2): doi: 10.1002/adma.201704531.
|