| 1 | WANG C Y, XIA K L, WANG H M, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials, 2019, 31(9): doi: 10.1002/adma.201801072. | 
																													
																						| 2 | SHI W, GUO Y L, LIU Y Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201901493. | 
																													
																						| 3 | SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020, 32(5): doi: 10.1002/adma.201901958. | 
																													
																						| 4 | MA Y J, ZHANG Y C, CAI S S, et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201902062. | 
																													
																						| 5 | LI P, ZHANG Y K, ZHENG Z J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902987. | 
																													
																						| 6 | CHEN D, PEI Q B. Electronic muscles and skins: A review of soft sensors and actuators[J]. Chemical Reviews, 2017, 117(17): 11239-11268. | 
																													
																						| 7 | ROOT S E, SAVAGATRUP S, PRINTZ A D, et al. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics[J]. Chemical Reviews, 2017, 117(9): 6467-6499. | 
																													
																						| 8 | LIU K, YAO Y, LYU T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355-227362. | 
																													
																						| 9 | HU R F, WANG Y H, ZHAO J, et al. Fabrication of stretchable multi-element composite for flexible solid-state electrochemical capacitor application[J]. Chemical Engineering Science, 2018, 361: 109-116. | 
																													
																						| 10 | TIAN B B, ZHENG J, ZHAO C X, et al. Correction: Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(20): 9997-10003. | 
																													
																						| 11 | CHEN X, VILLA N S, ZHUANG Y F, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201902769. | 
																													
																						| 12 | 邵光伟, 郭珊珊, 于瑞, 等. 可拉伸超级电容器的研究进展: 电极、电解质和器件[J]. 物理学报, 2020, 69(17): 149-168.SHAO G W, GUO S S, YU R, et al. Stretchable supercapacitors: Electrodes, electrolytes, and devices[J]. Acta Physica Sinica, 2020, 69(17): 149-168. | 
																													
																						| 13 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. | 
																													
																						| 14 | WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4338. | 
																													
																						| 15 | CAO J Y, LI X D, WANG Y M, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674. | 
																													
																						| 16 | WANG X, YAN C Y, YAN J, et al. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device[J]. Nano Energy, 2015, 11: 765-773. | 
																													
																						| 17 | 刘云鹏, 李雪, 韩颖慧, 等. 锂离子超级电容器电极材料研究进展[J]. 高电压技术, 2018, 44(4): 1140-1148.LIU Y P, LI X, HAN Y H, et al. Research progress in electrode materials for lithium-ion supercapacitor[J]. High Voltage Engineering, 2018, 44(4): 1140-1148. | 
																													
																						| 18 | WASEEM R, FAIZAN A, NADEEM R, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52(5): 441-473. | 
																													
																						| 19 | GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7: 538-551. | 
																													
																						| 20 | PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288. | 
																													
																						| 21 | 陈斌, 吕彦伯, 谌可炜, 等. 固态超级电容器电解质的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939.CHEN B, LYU Y B, CHEN K W, et al. Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939. | 
																													
																						| 22 | CHOI J, GHAFFARI R, BAKER L B, et al. Skin-interfaced systems for sweat collection and analytics[J]. Science Advances, 2018, 4(2): 3921-3931. | 
																													
																						| 23 | 侯朝霞, 王凯, 屈晨滢, 等. 凝胶聚合物电解质在二次电池的研究进展[J]. 功能材料, 2020, 51(10): 10060-10068.HOU Z X, WANG K, QU C Y, et al. Research progress of gel polymer electrolytes in secondary batteries[J]. Journal of Functional Materials, 2020, 51(10): 10060-10068. | 
																													
																						| 24 | ZHONG C, DENG Y D, HU W B, et al. Electrolytes for Electrochemical Supercapacitors[M]. Boca Raton, USA: CRC Press, 2016. | 
																													
																						| 25 | YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37977-37985. | 
																													
																						| 26 | WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie, 2019, 58(44): 15707-15711. | 
																													
																						| 27 | FANG L, CAI Z F, DING Z Q, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21895-21903. | 
																													
																						| 28 | LIU J, HUANG J W, CAI Q P, et al. Design of slidable polymer networks: A rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20479-20489. | 
																													
																						| 29 | SHI Y H, ZHANG Y, JIA L M, et al. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36028-36036. | 
																													
																						| 30 | ZHANG H H, LI J Y, GU C, et al. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes[J]. Journal of Power Sources, 2016, 332: 413-419. | 
																													
																						| 31 | ZHANG B, LI J H, LIU F, et al. Self-healable polyelectrolytes with mechanical enhancement for flexible and durable supercapacitors[J]. Chemistry—A European Journal. 2019, 25(50): 11715-11724. | 
																													
																						| 32 | LEE G, KIM J W, PARK H, et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte[J]. ACS Nano, 2019, 13(1): 855-866. | 
																													
																						| 33 | ROGERS R D, VOTH G A. Ionic liquids[J]. Accounts of Chemical Research, 2007, 40(11): 1077-1078. | 
																													
																						| 34 | LIU X H, WEN Z B, WU D B, et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(30):11569-11573. | 
																													
																						| 35 | KIM W. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes[J]. Nanotechnology, 2016, 27(22): doi: 10.1088/0957-4484/27/22/225402. | 
																													
																						| 36 | WANG H X, DAI L X, CHAI D X, et al. Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface[J]. Journal of Colloid and Interface Science, 2019, 56: 629-637. | 
																													
																						| 37 | CHEN C R, QIN H, CONG H P, et al. A highly stretchable and real-time healable supercapacitor[J]. Advanced Materials, 2019, 31(19): doi: 10.1002/adma.201900573. | 
																													
																						| 38 | YOON J, LEE J, HUR J. Stretchable supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain[J]. Nanomaterials, 2018, 8(7): 8070541-8070555. | 
																													
																						| 39 | WU C Y, TANG X, GAN L, et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20535-20544. | 
																													
																						| 40 | ZHAO C, JIA X T, SHU K W, et al. Stretchability enhancement of buckled polypyrrole electrodes for stretchable supercapacitors via engineering substrate surface roughness[J]. Electrochimica Acta, 2020, 343: 136099-136109. | 
																													
																						| 41 | CHU X, ZHANG H T, SU H, et al. A novel stretchable supercapacitor electrode with high linear capacitance[J]. Chemical Engineering Journal, 2018, 349: 168-175. | 
																													
																						| 42 | SHANG Y Y, WANG C H, HE X D, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12: 401-409. | 
																													
																						| 43 | XIE Y Z, LIU Y, ZHAO Y D, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode[J]. Journal of Materials Chemistry A, 2014, 2(24): 9142-9149. | 
																													
																						| 44 | HUANG Y, TAO J Y, MENG W J, et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability[J]. Nano Energy, 2015, 11: 518-525. | 
																													
																						| 45 | YUN T G, HWANG B I, KIM D, et al. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9228-9234. | 
																													
																						| 46 | YUN J, SONG C, LEE H, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor[J]. Nano Energy, 2018, 49: 644-654. | 
																													
																						| 47 | LYU Z S, LUO Y F, TANG Y X, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J]. Advanced Materials, 2018, 30(2): doi: 10.1002/adma.201704531. |