储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1383-1400.doi: 10.19799/j.cnki.2095-4239.2021.0570

• 储能材料与器件 • 上一篇    下一篇

合金型负极预锂化技术研究进展

张策1,2(), 李思吾1(), 谢佳1()   

  1. 1.华中科技大学电气与电子工程学院
    2.华中科技大学材料科学与工程学院,湖北 武汉 430000
  • 收稿日期:2021-11-01 修回日期:2021-12-13 出版日期:2022-05-05 发布日期:2022-05-07
  • 通讯作者: 谢佳 E-mail:m201970850@hust.edu.cn;urey56@foxmail.com;xiejia@hust.edu.cn
  • 作者简介:张策(1994—),男,硕士研究生,研究方向为电化学储能材料,E-mail:m201970850@hust.edu.cn
    李思吾(1991—),男,博士后,主要研究方向为金属有机框架材料在电化学储能器件中的应用,E-mail:urey56@foxmail.com
  • 基金资助:
    国家自然科学基金(U1966214)

Research progress on the prelithiation technology of alloy-type anodes

Ce ZHANG1,2(), Siwu LI1(), Jia XIE1()   

  1. 1.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology
    2.School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
  • Received:2021-11-01 Revised:2021-12-13 Online:2022-05-05 Published:2022-05-07
  • Contact: Jia XIE E-mail:m201970850@hust.edu.cn;urey56@foxmail.com;xiejia@hust.edu.cn

摘要:

负极是锂离子电池的关键组件,实现高容量合金型负极在锂离子电池中的应用可大幅提升锂离子电池的能量密度。然而目前合金型负极存在严重的低首圈库仑效率问题,致使大量活性锂在循环初期被不可逆消耗,制约了其在提升锂离子电池能量密度方面发挥优势。预锂化技术被认为是解决合金型负极锂损失问题的有效方案,主要分为负极预锂化与正极预锂化。本文通过调研整理近期相关文献,详细分析了不同预锂化技术在合金负极中的研究进展与应用前景。对于负极预锂化技术,主要介绍了电化学预锂化、接触金属锂、化学预锂化以及负极富锂添加剂等策略;对于正极预锂化技术,主要介绍了正极富锂添加剂与正极过锂化两种方法;对于不同预锂化技术的实用化,主要分析了补锂试剂稳定性与安全性、补锂试剂的利用率以及成本等问题。综合分析表明,预锂化技术是弥补不可逆容量损失、提高合金型负极锂离子电池的能量密度与循环寿命的有效方案,低成本与高安全性是预锂化技术实用化的关键所在。

关键词: 预锂化, 库仑效率, 硅负极, 高能量密度, 锂离子电池

Abstract:

The anode is a key component of lithium-ion batteries, and the use of high-capacity alloy-type anodes can significantly improve the energy density of those batteries. However, alloy-type anodes suffer from low initial coulombic efficiency. This problem leads to irreversible consumption of large quantities of active lithium, which offsets the improved battery energy density. Prelithiation technology is considered a promising approach to address this problem, applicable both to anodes and cathodes. This paper summarizes research progress and application prospects for different prelithiation technologies based on a comprehensive analysis of recent literature. For anode prelithiation, the strategies of electrochemical prelithiation, chemical prelithiation, lithium-rich anode additives, and direct contact with metallic lithium, are introduced. For cathode prelithiation, strategies involving lithium-rich additives and over-lithiation are discussed. With a view toward the practical realization of different prelithiation technologies, this analysis focuses on the stability and safety, utilization rate, and cost of each prelithiation reagent. Results demonstrate that prelithiation can be an effective solution to compensate for irreversible capacity loss. Thus, it can contribute to significant improvements in energy density and cycle life of lithium-ion batteries with alloy anodes. Low cost and high safety are the keys to promote the practical application of prelithiation technology.

Key words: pre-lithiation, coulombic efficiency, silicon anode, high energy density, lithium-ion batteries

中图分类号: