1 |
LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
|
2 |
BIN D, WEN Y P, WANG Y G, et al. The development in aqueous lithium-ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1521-1535.
|
3 |
YANG H C, LI J, SUN Z H, et al. Reliable liquid electrolyte for lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 113-129.
|
4 |
NOLAN A M, ZHU Y Z, HE X F, et al. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J]. Joule, 2018, 2(10): 2016-2046.
|
5 |
HUANG W L, ZHAO N, BI Z J, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?[J]. Materials Today Nano, 2020, 10: doi: 10.1016/j.mtnano.2020.100075.
|
6 |
ZOU Z Y, LI Y J, LU Z H, et al. Mobile ions in composite solids[J]. Chemical Reviews, 2020, 120(9): 4169-4221.
|
7 |
黄晓, 吴林斌, 黄祯, 等. 锂离子固态电解质研究中的电化学测试方法[J]. 储能科学与技术, 2020, 9(2): 479-500.
|
|
HUANG X, WU L B, HUANG Z, et al. Characterization and testing of key electrical and electrochemical properties of lithium-ion solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 479-500.
|
8 |
DANG H Y, GUO X M, HUANG Y P, et al. Structure and properties of NASICON synthesized by two different zirconium salts[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 768-773.
|
9 |
姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537.
|
|
JIANG P F, SHI Y S, LI K W, et al. Recent progress on the Li7La3Zr2O12(LLZO)solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537.
|
10 |
QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540.
|
11 |
TSAO C H, LIN Y T, HSU S Y, et al. Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery[J]. Electrochimica Acta, 2020, 361: doi: 10.1016/j.electacta.2020.137076.
|
12 |
WANG Q J, SONG W L, FAN L Z, et al. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries[J]. Journal of Membrane Science, 2015, 486: 21-28.
|
13 |
GAO H, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.15Nb0.15O12 enhanced UV-cured poly(ethylene oxide)-based composite gel polymer electrolytes for lithium metal batteries[J]. Electrochimica Acta, 2020, 360: doi: 10.1016/j.electacta.2020.137014.
|
14 |
LI X T, HAN X Q, ZHANG H R, et al. Frontier orbital energy-customized ionomer-based polymer electrolyte for high-voltage lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51374-51386.
|
15 |
ZHANG H R, ZHANG J J, MA J, et al. Polymer electrolytes for high energy density ternary cathode material-based lithium batteries[J]. Electrochemical Energy Reviews, 2019, 2(1): 128-148.
|
16 |
WANG S Q, WEI C, DING W W, et al. High-voltage sulfolane plasticized UV-curable gel polymer electrolyte[J]. Polymers, 2019, 11(8): doi: 10.3390/polym11081306.
|
17 |
ZHOU J Q, JI H Q, LIU J, et al. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery[J]. Energy Storage Materials, 2019, 22: 256-264.
|
18 |
HU R X, QIU H Y, ZHANG H R, et al. A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries[J]. Small, 2020, 16(13): doi: 10.1002/smll201907163.
|
19 |
LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): doi: 10.1126/sciadv.aat5383.
|
20 |
XU D, SU J M, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9(25): doi: 10.1002/aenm.201900611.
|
21 |
HUANG S Q, CUI Z L, QIAO L X, et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries[J]. Electrochimica Acta, 2019, 299: 820-827.
|
22 |
CHEN L Y, FU J F, LU Q, et al. Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization[J]. Chemical Engineering Journal, 2019, 378: doi: 10.1016/j.cej.2019.122245.
|
23 |
张建军, 杨金凤, 吴瀚, 等. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019, 50(9): 890-914.
|
|
JIANJUN Z, JINFENG Y, HAN W, et al. Research progress of in situ generated polymer electrolyte for rechargeable batteries[J]. Acta Polymerica Sinica, 2019, 50(9): 890-914.
|
24 |
AHN J H, YOU T S, LEE S M, et al. Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety[J]. Journal of Power Sources, 2020, 472: doi: 10.1016/j.jpowsour.2020.228519.
|
25 |
MA Y, MA J, CHAI J C, et al. Two players make a formidable combination: In situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41462-41472.
|
26 |
LI X L, QIAN K, HE Y B, et al. A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances[J]. Journal of Materials Chemistry A, 2017, 5(35): 18888-18895.
|
27 |
ZUO T T, SHI Y, WU X W, et al. Constructing a stable lithium metal-gel electrolyte interface for quasi-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30065-30070.
|
28 |
LIU M, ZHOU D, HE Y B, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22: 278-289.
|
29 |
LIU M, JIANG H R, REN Y X, et al. In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 213: 871-878.
|
30 |
孙秋实, 朱崇佳, 谢健, 等. 基于陶瓷/聚合物的准固态复合电解质的制备及电化学性能[J]. 无机化学学报, 2019, 35(5): 865-870.
|
|
SUN Q S, ZHU C J, XIE J, et al. Preparation and electrochemical performance of ceramic/polymer-based quasi-solid composite electrolyte[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(5): 865-870.
|
31 |
DING W W, WEI C, WANG S Q, et al. Preparation and properties of a high-performance EOEOEA-based gel-polymer-electrolyte lithium battery[J]. Polymers, 2019, 11(8): doi: 10.3390/polym11081296.
|
32 |
NIU C Q, ZHANG M K, CHEN G P, et al. An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte[J]. Electrochimica Acta, 2018, 283: 349-356.
|
33 |
TSUKASAKI H, FUKUDA W, MORIMOTO H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8: doi: 10.1038/s41598-018-34017-2.
|
34 |
MALEKI H, DENG G P, ANANI A, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9): 3224-3229.
|
35 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|