1 |
MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2( x-1): A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783-789.
|
2 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
3 |
KANG K, MENG Y S, BREGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. ChemInform, 2006, 37(20):.
|
4 |
WANG Y, CAO G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269.
|
5 |
LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.
|
6 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
7 |
夏定国. “高比能动力电池的关键技术和相关基础科学问题研究”项目介绍[J]. 储能科学与技术, 2017, 6(1): 165-168.
|
|
XIA D G. Project “Key technology and basic science problem reach for high energy density lithium batteries”[J]. Energy Storage Science and Technology, 2017, 6(1): 165-168.
|
8 |
LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982.
|
9 |
LIU L J, WANG Z X, LI H, et al. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries[J]. Solid State Ionics, 2002, 152/153: 341-346.
|
10 |
WANG Z X, LIU L J, CHEN L Q, et al. Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries[J]. Solid State Ionics, 2002, 148(3/4): 335-342.
|
11 |
WANG Z X, WU C, LIU L J, et al. Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149(4): A466.
|
12 |
GOODENOUGH J B. Evolution of strategies for modern rechargeable batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1053-1061.
|
13 |
LIU Y, LIN X J, SUN Y G, et al. Precise surface engineering of cathode materials for improved stability of lithium-ion batteries[J]. Small, 2019, 15(32): 1901019.
|
14 |
NIE K H, SUN X R, WANG J Y, et al. Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method[J]. Journal of Power Sources, 2020, 470: doi: 10.1016/j.jpowsour.2020.228423.
|
15 |
ZHANG J N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
|
16 |
NIE K H, WANG X L, QIU J L, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Letters, 2020, 5(3): 826-832.
|
17 |
HU E Y, LI Q H, WANG X L, et al. Oxygen-redox reactions in LiCoO2 cathode without O-O bonding during charge-discharge[J]. Joule, 2021, 5(3): 720-736.
|
18 |
LIU R Q, LI D Y, TIAN D, et al. Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries[J]. Journal of Power Sources, 2014, 251: 279-286.
|
19 |
WEN L N, QIN X, MENG W, et al. Boron oxide-tin oxide/graphene composite as anode materials for lithium ion batteries[J]. Materials Science and Engineering: B, 2016, 213: 63-68.
|
20 |
WU Y D, BEN L B, YU H L, et al. Understanding the effect of atomic-scale surface migration of bridging ions in binding Li3PO4 to the surface of spinel cathode materials[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6937-6947.
|
21 |
WU Y D, BEN L B, ZHAN Y J, et al. Binding Li3PO4 to spinel LiNi0.5Mn1.5O4 via a surface co-containing bridging layer to improve the electrochemical performance[J]. Energy Technology, 2021, 9(8): 2100147.
|
22 |
HAN J D, JING Y, JIA Y Z, et al. Surface modified cathode materials for Li-ion battery by B2O3[C]//The 9th Asian Conference on Solid State Ionics, 2004, Cheju Isl, SOUTH KOREA.
|
23 |
CHEN J S, WANG X L, JIN E M, et al. Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries[J]. Energy, 2021, 222: 119913.
|
24 |
TANG S B, LAI M O, LU L. Li-ion diffusion in highly (0 0 3) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2008, 449(1/2): 300-303.
|
25 |
ZUO X X, FAN C J, XIAO X, et al. High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive[J]. Journal of Power Sources, 2012, 219: 94-99.
|
26 |
GUPTA R, MANTHIRAM A. Chemical extraction of lithium from layered LiCoO2[J]. Journal of Solid State Chemistry, 1996, 121(2): 483-491.
|