1 |
Torben APP , Steen SKAARUP , Alan HOOPER . Ionic conductivity of pure and doped Li3N[J]. Solid State Ionics, 1983, 11(2): 97-103.
|
2 |
KHORASSANI A , IZQUIERDO G , WEST A R . The solid electrolyte system, Li3PO4-Li4SiO4 [J]. Materials Research Bulletin, 1981, 16(12): 1561-1567.
|
3 |
ANDREEV O L , ZELYUTIN G V , MARTEM'YANOVA Z S , et al . Electrical conductivity of Li6BeO4-Li5AlO4 solid solutions[J]. Inorganic Materials, 2001, 37(2): 177-179.
|
4 |
HONG H Y P . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
|
5 |
Leif NILSSON , Hessel ANDERSENN , Arnold LUNDéN . The structure of the solid electrolyte LiAgSO4 at 803 K and of LiNaSO4 at 848 K[J]. Solid State Ionics, 1989, 34(1-2): 111-119.
|
6 |
Roy TÄRNEBERG , Arnold LUND . Ion diffusion in the high-temperature phases Li2SO4, LiNaSO4, LiAgSO4 and Li4Zn(SO4)3 [J]. Solid State Ionics, 1996, 90(1-4): 209-220.
|
7 |
LI Xiaona , LIANG Jianwen , LUO Jing , et al . Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.
|
8 |
Koji YAMADA , Keiji KUMANO , Tsutomu OKUDA . Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR[J]. Solid State Ionics, 2006, 177(19-25): 1691-1695.
|
9 |
HUA Chunxiu , FANG Xiangpeng , WANG Zhaoxiang , et al . Lithium storage in perovskite lithium lanthanum titanate[J]. Electrochemistry Communications, 2013, 32: 5-8.
|
10 |
Alexandra EMLY , Emmanouil KIOUPAKIS , Anton VAN DER VEN . Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
|
11 |
Venkataraman THANGADURAI , SHUKLA Ashok K , Jagannatha GOPALA-KRISHNAN . New lithium-ion conductors based on the NASICON structure[J]. Journal of Materials Chemistry, 1999, 9(3): 739-741.
|
12 |
MURUGAN R , THANGADURAI V , WEPPNER W . Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781.
|
13 |
RAMAKUMAR S , DEVIANNAPOORANI C , DHIVYA L , et al . Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411.
|
14 |
AkitoshiI HAYASH , Shigenori HAMA , Hideyuki MORIMOTO , et al . Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479.
|
15 |
Kenji HOMMA , Masao YONEMURA , Takeshi KOBAYASHI , et al . Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 [J]. Solid State Ionics, 2011, 182(1): 53-58.
|
16 |
Hisanori YAMANE , Masatoshi SHIBATA , Yukio SHIMANE , et al . Crystal structure of a superionic conductor, Li7P3S11 [J]. Solid State Ionics, 2007, 178(15-18): 1163-1167.
|
17 |
Ezhiylmurugan RANGASAMY , LIU Zengcai , Mallory GOBET , et al . An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387.
|
18 |
Ryoji KANNO , Masahiro MURAYAMA . Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746.
|
19 |
Noriaki KAMAYA , Kenji HOMMA , Yuichiro YAMAKAWA , et al . A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
|
20 |
HORI S , KATO M , SUZUKI K , et al . Phase diagramof the Li4GeS4-Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12 [J]. Journal of the American Ceramic Society, 2015, 98(10): 3352-3360.
|
21 |
Yuki KATO , Satoshi HORI , Toshiya SAITO , et al . High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4):doi: 10.1038/nenergy.2016.30.
|
22 |
Hans-Joerg DEISEROTH , KONG Shiao Tong , Hellmut ECKERT , et al . Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie-International Edition, 2008, 47(4): 755-758.
|
23 |
RAO R P , SHARMA N , PETERSON V K , et al . Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction[J]. Solid State Ionics, 2013, 230: 72-76.
|
24 |
ADELI P , BAZAK J D , PARK K H , et al . Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686.
|
25 |
LIU Jun , BAO Zhenan , CUI Yi , et al . Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
|
26 |
HODGE I M , INGRAM M D , WEST A R . Impedance and modulus spectroscopy of polycrystalline solid electrolytes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74(2): 125-143.
|
27 |
TENHAEFF W E , RANGASAMY E , WANG Y Y , et al . Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem, 2014, 1(2): 375-378.
|
28 |
REN Yaoyu , CHEN Kai , CHEN Rujun , et al . Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623.
|
29 |
BI Jiaying , MU Daobin , WU Borong , et al . A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, doi: 10.1039/C9TA08601C .
doi: 10.1039/C9TA08601C
|
30 |
CHEN Shaojie , XIE Dongjiu , LIU Gaozhan , et al . Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
|
31 |
ZHANG Qingqing , LIU Kai , DING Fei , et al . Recent advances in solid polymer electrolytes for lithium batteries[J]. Nano Research, 2017, 10(12): 4139-4174.
|
32 |
CHENG Xunliang , PAN Jian , ZHAO Yang , et al . Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7): doi: 10.1002/aenm.201702184.
|
33 |
RIESS I . Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors[J]. Solid State Ionics, 1996, 91(3/4): 221-232.
|
34 |
KVAN BEEK L . AC and DC polarization effects in a protonic conductor (borax)[J]. Physica, 1963, 29(3): 215-224.
|
35 |
Jun-ichiro MIZUSAKI , Kazuo FUEKI , Takashi MUKAIBO . An investigation of the Hebb-Wagner’s dc polarization technique I. Steady-state chemical potential profiles in solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 1975, 48(2): 428-431.
|
36 |
HAN F D , ZHU Y Z , HE X F , et al . Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201501590.
|
37 |
WANG Yuxing , LU Dongping , XIAO Jie , et al . Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5 [J]. Energy Storage Materials, 2019, 19: 80-87.
|
38 |
DUAN Huanan , ZHENG Hongpeng , ZHOU Ying , et al . Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53.
|
39 |
LU Yang , HUANG Xiao , SONG Zhen , et al . Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290.
|
40 |
Kazunori TAKADA , Narumi OHTA , ZHANG Lianqi , et al . Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597.
|
41 |
ZHANG Z H , CHEN S J , YANG J , et al . Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565.
|
42 |
LU Yang , HUANG Xiao , RUAN Yadong , et al . An in-situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39): 18853-18858.
|
43 |
HUANG Xiao , LU Yang , SONG Zhen , et al . Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-217.
|
44 |
HUANG Xiao , LU Yang , GUO Haojie , et al . None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density[J]. ACS Applied Energy Materials, 2018, 1(10): 5355-5365.
|