储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 501-514.doi: 10.19799/j.cnki.2095-4239.2020.0065
收稿日期:
2020-02-08
修回日期:
2020-02-21
出版日期:
2020-03-05
发布日期:
2020-03-15
通讯作者:
姚霞银
E-mail:yaoxy@nimte.ac.cn
作者简介:
吴敬华(1982—),男,博士,副研究员,研究方向为正极材料与电池界面,E-mail:wujh@nimte.ac.cn;
基金资助:
WU Jinghua1,2, YAO Xiayin1,2()
Received:
2020-02-08
Revised:
2020-02-21
Online:
2020-03-05
Published:
2020-03-15
Contact:
Xiayin YAO
E-mail:yaoxy@nimte.ac.cn
摘要:
采用不可燃的无机固体电解质代替液体有机电解质的全固态锂电池,被认为是解决锂电池燃烧和泄漏等安全问题的终极解决方案之一。同时,锂金属负极的应用可以进一步提高电池的能量密度。近年来,得益于无机固体电解质锂离子电导率方面的突破,硫化物固体电解质被认为是最有前途的锂离子导体之一。然而,在该领域仍有许多挑战亟待解决,主要包括硫化物固体电解质的稳定性、硫化物固体电解质与电极之间的不稳定界面以及锂枝晶的形成与生长。因此,构建稳定的电极/固体电解质界面是实现高性能全固态锂电池的关键。本文针对当前基于硫化物固体电解质全固态锂电池面临的挑战和机遇,总结了目前存在的各种界面问题以及界面调控策略,最后探讨了全固态锂电池可能的研究方向和发展趋势。
中图分类号:
吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514.
WU Jinghua, YAO Xiayin. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514.
1 | CHU S , MAJUMDAR A . Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | GAO Z , SUN H , FU L , et al . Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): doi: 10.1002/adma.201705702. |
3 | 李泓, 许晓雄 . 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI Hong , XU Xiaoxiong . R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
4 | MANTHIRAM A , YU X , WANG S . Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16. |
5 | KAMAYA N , HOMMA K , YAMAKAWA Y , et al . A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
6 | ZHANG Q , CAO D , MA Y , et al . Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): doi: 10.1002/adma.201901131. |
7 | 段惠, 殷雅侠, 郭玉国, 等 . 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
DUAN Hui , YIN Yaxia , GUO Yuguo , et al . Research progress on solid-state lithium metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. | |
8 | NIE K , HONG Y , QIU J , et al . Interfaces between cathode and electrolyte in solid state lithium batteries: Challenges and perspectives[J]. Frontiers in Chemistry, 2018, 6: doi: 10.3389/fchem.2018.00616. |
9 | 张强, 姚霞银, 张洪周, 等 . 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5(5): 659-667. |
ZHANG Qiang , YAO Xiayin , ZHANG Hongzhou , et al . Research progress on interfaces of all solid state lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 659-667. | |
10 | TAKADA K , OHTA N , ZHANG L , et al . Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597. |
11 | OHTA N , TAKADA K , ZHANG L , et al . Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18(17): 2226-2229. |
12 | SAKUDA A , HAYASHI A , TATSUMISAGO M . Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956. |
13 | HARUYAMA J , SODEYAMA K , TATEYAMA Y . Cation mixing properties toward co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 286-292. |
14 | CHU I H , NGUYEN H , HY S, et al . Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7843-7853. |
15 | KOERVER R , AYG N I, LEICHTWEI T , et al . Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
16 | OHTOMO T , HAYASHI A , TATSUMISAGO M , et al . All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling[J]. J. Solid State Electrochem., 2013, 17(10): 2551-2557. |
17 | XU H J , YU Y R , WANG Z , et al . A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl halichalcogenides[J]. Journal of Materials Chemistry A, 2019, 7(10): 5239-5247. |
18 | ZHANG Z , ZHANG L , YAN X , et al . All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. Journal of Power Sources, 2019, 410: 162-170. |
19 | MURAMATSU H , HAYASHI A , OHTOMO T , et al . Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116-119. |
20 | HAYASHI A , MURAMATSU H , OHTOMO T , et al . Improvement of chemical stability of Li3PS4 glass electrolytes by adding M x O y (M=Fe, Zn, and Bi) nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1(21): 6320-6326. |
21 | CHEN S , XIE D , LIU G , et al . Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
22 | SHIN B R , NAM Y J, KIM J W , et al . Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries[J]. Scientific Reports, 2014, 4: 5572-5580. |
23 | NAGAO M , HAYASHI A , TATSUMISAGO M . Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte[J]. Electrochimica Acta, 2011, 56(17): 6055-6059. |
24 | XU R C , XIA X H , WANG X L , et al . Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
25 | XU R C , XIA X H , LI S H , et al . All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317. |
26 | YUBUCHI S , ITO Y, MATSUYAMA T , et al . 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2016, 285: 79-82. |
27 | SAKUDA A , HAYASHI A , OHTOMO T , et al . All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes[J]. Journal of Power Sources, 2011, 196(16): 6735-6741. |
28 | ASO K, SAKUDA A , HAYASHI A , et al . All-solid-state lithium secondary batteries using nis-carbon fiber composite electrodes coated with Li2S-P2S5 solid electrolytes by pulsed laser deposition[J]. ACS Appl. Mater. Interfaces, 2013, 5(3): 686-690. |
29 | ZHOU A , DAI X , LU Y , et al . Enhanced interfacial kinetics and high-voltage/high-rate performance of LiCoO2 cathode by controlled sputter-coating with a nanoscale Li4Ti5O12 ionic conductor[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34123-34131. |
30 | DAI X , WANG L , XU J , et al . Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15853-15859. |
31 | QIU B , WANG J , XIA Y G , et al . Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9185-9193. |
32 | VISBAL H , AIHARA Y , ITO S, et al . The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics[J]. Journal of Power Sources, 2016, 314: 85-92. |
33 | WOO J H, TREVEY J E , CAVANAGH A S , et al . Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries[J]. The Electrochemical Society, 2012, 159(7): A1120-A1124. |
34 | WANG B Q , ZHAO Y , BANIS M N , et al . Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1654-1661. |
35 | LI X , REN Z , NOROUZI BANIS M , et al . Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2019, 4(10): 2480-2488. |
36 | MENG X B , LIU J , LI X F , et al . Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes[J]. RSC Advances, 2013, 3(20): 7285-7288. |
37 | WANG B Q , LIU J , BANIS M N , et al . Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31786-31793. |
38 | WANG B Q , LIU J , SUN Q , et al . Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries[J]. Nanotechnology, 2014, 25(50): 504007. |
39 | LIU J , BANIS M N , LI X F , et al . Atomic layer deposition of lithium tantalate solid-state electrolytes[J]. The Journal of Physical Chemistry C, 2013, 117(39): 20260-20267. |
40 | KOZEN A C , PEARSE A J , LIN C F , et al . Atomic layer deposition of the solid electrolyte LiPON[J]. Chemistry of Materials, 2015, 27(15): 5324-5331. |
41 | YAO X , LIU D , WANG C , et al . High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. |
42 | WAN H , MWIZERWA J P , HAN F , et al . Grain-boundary-resistance-less Na3SbS4- x Se x solid electrolytes for all-solid-state sodium batteries[J]. Nano Energy, 2019, 66: doi: 10.1016/j.nanoen.2019.104109. |
43 | KWAK H W , PARK Y J . Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries[J]. Scientific Reports, 2019, 9: 8099-8108. |
44 | OHTA N , TAKADA K , SAKAGUCHI I , et al . LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490. |
45 | ZHANG Q , MWIZERWA J P , WAN H L , et al . Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost[J]. Journal of Materials Chemistry A, 2017, 5(45): 23919-23925. |
46 | XU R , WANG X , ZHANG S , et al . Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. Journal of Power Sources, 2018, 374(15): 107-112. |
47 | ZHANG Q , PENG G , MWIZERWA J P , et al . Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability[J]. Journal of Materials Chemistry A, 2018, 6(25): 12098-12105. |
48 | ZHANG Q , DING Z , LIU G , et al . Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2019, 23: 168-180. |
49 | ZHANG Q , WAN H , LIU G , et al . Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 771-782. |
50 | CHENG X-B , ZHANG R , ZHAO C Z , et al . Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
51 | CHENG X B , ZHANG R , ZHAO C Z , et al . A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016, 3(3): 1500213. |
52 | WENZEL S , LEICHTWEISS T , KRGER D , et al . Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
53 | CAMACHO-FORERO L E , BALBUENA P B . Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface[J]. Journal of Power Sources, 2018, 396: 782-790. |
54 | WENZEL S , RANDAU S , LEICHTWEI T , et al . Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
55 | BRON P , ROLING B , DEHNEN S . Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes[J]. Journal of Power Sources, 2017, 352: 127-134. |
56 | HAN F , WESTOVER A S , YUE J , et al . High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
57 | 陈雨晴, 杨晓飞, 于滢, 等 . 锂硫电池关键材料与技术的研究进展[J]. 储能科学与技术, 2017, 6(2): 169-189. |
CHEN Yuqing , YANG Xiaofei , YU Ying , et al . Key materials and technology research progress of lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(2): 169-189. | |
58 | JOUYBARI Y H , BERKEMEIER F . Enhancing silicon performance via LiPON coating: A prospective anode for lithium ion batteries[J]. Electrochimica Acta, 2016, 217: 171-180. |
59 | NAGAO M , HAYASHI A , TATSUMISAGO M , et al . In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18600-18606. |
60 | TAKEDA Y , YAMAMOTO O , IMANISHI N . Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes[J]. Electrochemistry, 2016, 84(4): 210-218. |
61 | BARAI P , HIGA K SRINIVASAN V . Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study[J]. Journal of the Electrochemical Society, 2017, 164(2): A180-A189. |
62 | HAN F , YUE J , ZHU X , et al . Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201703644. |
63 | ZHANG Z , ZHANG L , LIU Y , et al . Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance[J]. ChemSusChem, 2018, 11(21): 3774-3782. |
64 | WANG X , XIAO R , LI H , et al . Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21269-21277. |
65 | XIE D , CHEN S , ZHANG Z , et al . High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389(15): 140-147. |
66 | HU C , WANG Z , SUN Z , et al . Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations[J]. Chemical Physics Letters, 2014, 591(20): 16-20. |
67 | SUN Y , YAN W , AN L , et al . A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Solid State Ionics, 2017, 301: 59-63. |
68 | ZHANG Z , CHEN S , YANG J , et al . Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565. |
69 | GAO Y , WANG D , LI Y C , et al . Salt-based organic-inorganic nanocomposites: Towards a stable lithium Metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie International Edition, 2018, 57(41): 13608-13612. |
70 | WANG C , ADAIR K R , LIANG J , et al . Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26):doi: 10.1002/afdm.201900392. |
71 | MONROE C , NEWMAN J . The Impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. The Electrochemical Society, 2005, 152(2): A396-A404. |
72 | PORZ L , SWAMY T , SHELDON B W , et al . Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20):doi:10.1002/aenm.201701003. |
73 | KASEMCHAINAN J , ZEKOLL S , SPENCER JOLLY D , et al . Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18: 1105-1111. |
74 | TAKADA K , AOTANI N , IWAMOTO K , et al . Solid state lithium battery with oxysulfide glass[J]. Solid State Ionics, 1996, 86: 877-882. |
75 | KANNO R , MURAYAMA M , INADA T , et al . A self-assembled breathing interface for all-solid-state ceramic lithium batteries[J]. Electrochemical and Solid-state Letters, 2004, 7(12): A455-A458. |
76 | SAKUMA M , SUZUKI K , HIRAYAMA M , et al . Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics, 2016, 285: 101-105. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[3] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[4] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[5] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[6] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[7] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[8] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[9] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[10] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[11] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[12] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[13] | 张晶晶, 崔孝玲, 赵冬妮, 杨莉, 王洁. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. |
[14] | 林乙龙, 肖敏, 韩东梅, 王拴紧, 孟跃中. 锂离子电池化成技术研究进展[J]. 储能科学与技术, 2021, 10(1): 50-58. |
[15] | 牟粤, 杜韫, 明海, 张松通, 邱景义. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||