| 1 | 
																						 
											   Torben APP ,  Steen SKAARUP ,  Alan HOOPER  . Ionic conductivity of pure and doped Li3N[J]. Solid State Ionics, 1983, 11(2): 97-103.
											 											 | 
										
																													
																						| 2 | 
																						 
											   KHORASSANI A ,  IZQUIERDO G ,  WEST A R  . The solid electrolyte system, Li3PO4-Li4SiO4 [J]. Materials Research Bulletin, 1981, 16(12): 1561-1567.
											 											 | 
										
																													
																						| 3 | 
																						 
											   ANDREEV O L ,  ZELYUTIN G V ,  MARTEM'YANOVA Z S , et al . Electrical conductivity of Li6BeO4-Li5AlO4 solid solutions[J]. Inorganic Materials, 2001, 37(2): 177-179.
											 											 | 
										
																													
																						| 4 | 
																						 
											   HONG H Y P  . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
											 											 | 
										
																													
																						| 5 | 
																						 
											   Leif NILSSON ,  Hessel ANDERSENN ,  Arnold LUNDéN  . The structure of the solid electrolyte LiAgSO4 at 803 K and of LiNaSO4 at 848 K[J]. Solid State Ionics, 1989, 34(1-2): 111-119.
											 											 | 
										
																													
																						| 6 | 
																						 
											   Roy TÄRNEBERG ,  Arnold LUND  . Ion diffusion in the high-temperature phases Li2SO4, LiNaSO4, LiAgSO4 and Li4Zn(SO4)3 [J]. Solid State Ionics, 1996, 90(1-4): 209-220.
											 											 | 
										
																													
																						| 7 | 
																						 
											   LI Xiaona ,  LIANG Jianwen ,  LUO Jing , et al . Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.
											 											 | 
										
																													
																						| 8 | 
																						 
											   Koji YAMADA ,  Keiji KUMANO ,  Tsutomu OKUDA  . Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR[J]. Solid State Ionics, 2006, 177(19-25): 1691-1695.
											 											 | 
										
																													
																						| 9 | 
																						 
											   HUA Chunxiu ,  FANG Xiangpeng ,  WANG Zhaoxiang , et al . Lithium storage in perovskite lithium lanthanum titanate[J]. Electrochemistry Communications, 2013, 32: 5-8.
											 											 | 
										
																													
																						| 10 | 
																						 
											   Alexandra EMLY ,  Emmanouil KIOUPAKIS ,  Anton VAN DER VEN  . Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
											 											 | 
										
																													
																						| 11 | 
																						 
											   Venkataraman THANGADURAI ,  SHUKLA Ashok K ,  Jagannatha GOPALA-KRISHNAN  . New lithium-ion conductors based on the NASICON structure[J]. Journal of Materials Chemistry, 1999, 9(3): 739-741.
											 											 | 
										
																													
																						| 12 | 
																						 
											   MURUGAN R ,  THANGADURAI V ,  WEPPNER W  . Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781.
											 											 | 
										
																													
																						| 13 | 
																						 
											   RAMAKUMAR S ,  DEVIANNAPOORANI C ,  DHIVYA L , et al . Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411.
											 											 | 
										
																													
																						| 14 | 
																						 
											   AkitoshiI HAYASH ,  Shigenori HAMA ,  Hideyuki MORIMOTO , et al . Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society, 2001, 84(2): 477-479.
											 											 | 
										
																													
																						| 15 | 
																						 
											   Kenji HOMMA ,  Masao YONEMURA ,  Takeshi KOBAYASHI , et al . Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 [J]. Solid State Ionics, 2011, 182(1): 53-58.
											 											 | 
										
																													
																						| 16 | 
																						 
											   Hisanori YAMANE ,  Masatoshi SHIBATA ,  Yukio SHIMANE , et al . Crystal structure of a superionic conductor, Li7P3S11 [J]. Solid State Ionics, 2007, 178(15-18): 1163-1167.
											 											 | 
										
																													
																						| 17 | 
																						 
											   Ezhiylmurugan RANGASAMY ,  LIU Zengcai ,  Mallory GOBET , et al . An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387.
											 											 | 
										
																													
																						| 18 | 
																						 
											   Ryoji KANNO ,  Masahiro MURAYAMA  . Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746.
											 											 | 
										
																													
																						| 19 | 
																						 
											   Noriaki KAMAYA ,  Kenji HOMMA ,  Yuichiro YAMAKAWA , et al . A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
											 											 | 
										
																													
																						| 20 | 
																						 
											   HORI S ,  KATO M ,  SUZUKI K , et al . Phase diagramof the Li4GeS4-Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12 [J]. Journal of the American Ceramic Society, 2015, 98(10): 3352-3360.
											 											 | 
										
																													
																						| 21 | 
																						 
											   Yuki KATO ,  Satoshi HORI ,  Toshiya SAITO , et al . High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4):doi: 10.1038/nenergy.2016.30.
											 											 | 
										
																													
																						| 22 | 
																						 
											   Hans-Joerg DEISEROTH ,  KONG Shiao Tong ,  Hellmut ECKERT , et al . Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie-International Edition, 2008, 47(4): 755-758.
											 											 | 
										
																													
																						| 23 | 
																						 
											   RAO R P ,  SHARMA N ,  PETERSON V K , et al . Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction[J]. Solid State Ionics, 2013, 230: 72-76.
											 											 | 
										
																													
																						| 24 | 
																						 
											   ADELI P ,  BAZAK J D ,  PARK K H , et al . Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686.
											 											 | 
										
																													
																						| 25 | 
																						 
											   LIU Jun ,  BAO Zhenan ,  CUI Yi , et al . Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
											 											 | 
										
																													
																						| 26 | 
																						 
											   HODGE I M ,  INGRAM M D ,  WEST A R  . Impedance and modulus spectroscopy of polycrystalline solid electrolytes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 74(2): 125-143.
											 											 | 
										
																													
																						| 27 | 
																						 
											   TENHAEFF W E ,  RANGASAMY E ,  WANG Y Y , et al . Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem, 2014, 1(2): 375-378.
											 											 | 
										
																													
																						| 28 | 
																						 
											   REN Yaoyu ,  CHEN Kai ,  CHEN Rujun , et al . Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623.
											 											 | 
										
																													
																						| 29 | 
																						 
											   BI Jiaying ,  MU Daobin ,  WU Borong , et al . A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, doi: 10.1039/C9TA08601C .
											 												 
																									doi: 10.1039/C9TA08601C
																																			 											 | 
										
																													
																						| 30 | 
																						 
											   CHEN Shaojie ,  XIE Dongjiu ,  LIU Gaozhan , et al . Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
											 											 | 
										
																													
																						| 31 | 
																						 
											   ZHANG Qingqing ,  LIU Kai ,  DING Fei , et al . Recent advances in solid polymer electrolytes for lithium batteries[J]. Nano Research, 2017, 10(12): 4139-4174.
											 											 | 
										
																													
																						| 32 | 
																						 
											   CHENG Xunliang ,  PAN Jian ,  ZHAO Yang , et al . Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7): doi: 10.1002/aenm.201702184.
											 											 | 
										
																													
																						| 33 | 
																						 
											   RIESS I  . Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors[J]. Solid State Ionics, 1996, 91(3/4): 221-232.
											 											 | 
										
																													
																						| 34 | 
																						 
											   KVAN BEEK L  . AC and DC polarization effects in a protonic conductor (borax)[J]. Physica, 1963, 29(3): 215-224.
											 											 | 
										
																													
																						| 35 | 
																						 
											   Jun-ichiro MIZUSAKI ,  Kazuo FUEKI ,  Takashi MUKAIBO  . An investigation of the Hebb-Wagner’s dc polarization technique I. Steady-state chemical potential profiles in solid electrolytes[J]. Bulletin of the Chemical Society of Japan, 1975, 48(2): 428-431.
											 											 | 
										
																													
																						| 36 | 
																						 
											   HAN F D ,  ZHU Y Z ,  HE X F , et al . Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201501590.
											 											 | 
										
																													
																						| 37 | 
																						 
											   WANG Yuxing ,  LU Dongping ,  XIAO Jie , et al . Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5 [J]. Energy Storage Materials, 2019, 19: 80-87.
											 											 | 
										
																													
																						| 38 | 
																						 
											   DUAN Huanan ,  ZHENG Hongpeng ,  ZHOU Ying , et al . Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53.
											 											 | 
										
																													
																						| 39 | 
																						 
											   LU Yang ,  HUANG Xiao ,  SONG Zhen , et al . Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290.
											 											 | 
										
																													
																						| 40 | 
																						 
											   Kazunori TAKADA ,  Narumi OHTA ,  ZHANG Lianqi , et al . Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597.
											 											 | 
										
																													
																						| 41 | 
																						 
											   ZHANG Z H ,  CHEN S J ,  YANG J , et al . Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565.
											 											 | 
										
																													
																						| 42 | 
																						 
											   LU Yang ,  HUANG Xiao ,  RUAN Yadong , et al . An in-situ element permeation constructed high endurance Li-LLZO interface at high current densities[J]. Journal of Materials Chemistry A, 2018, 6(39): 18853-18858.
											 											 | 
										
																													
																						| 43 | 
																						 
											   HUANG Xiao ,  LU Yang ,  SONG Zhen , et al . Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-217.
											 											 | 
										
																													
																						| 44 | 
																						 
											   HUANG Xiao ,  LU Yang ,  GUO Haojie , et al . None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density[J]. ACS Applied Energy Materials, 2018, 1(10): 5355-5365.
											 											 |