1 |
BI Z J, MU S, ZHAO N, et al. Cathode supported solid lithium batteries enabling high energy density and stable cyclability[J]. Energy Storage Materials, 2021, 35: 512-519.
|
2 |
LIU J H, KHANAM Z, AHMED S, et al. A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes[J]. Journal of Power Sources, 2021, 488: doi: 10.1016/j.jpowsour.2021.229461.
|
3 |
XIE P, YUAN W, LIU X B, et al. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors[J]. Energy Storage Materials, 2021, 36: 56-76.
|
4 |
WEI D, SCHERER M R J, BOWER C, et al. A nanostructured electrochromic supercapacitor[J]. Nano Letters, 2012, 12(4): 1857-1862.
|
5 |
CHENG G H, XU J L, DONG C Q, et al. Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2: 17307-17313.
|
6 |
LIU K L, YU C, GUO W, et al. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109.
|
7 |
BELLO I T, OLADIPO A O, ADEDOKUN O, et al. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review[J]. Materials Today Communication, 2020, 25: doi: 10.1016/j.mtcomm. 2020.101664.
|
8 |
WANG J, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications[J]. Nature Communications, 2014, 5: doi: 10.1038/ncomms5921.
|
9 |
BAYRAK P İ, ATAK G, NIKLASSON G A, et al. Electrochromic solar water splitting using a cathodic WO3 electrocatalyst[J]. Nano Energy, 2021, 81: doi: 10.1016/j.nanoen. 2020.105620.
|
10 |
BI Z J, LI X M, HE X L, et al. Integrated electrochromism and energy storage applications based on tungsten trioxide monohydrate nanosheets by novel one-step low temperature synthesis[J]. Solar Energy Materials and Solar Cells, 2018, 183: 59-65.
|
11 |
TIAN Y Y, CONG S, SU W M, et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality[J]. Nano Letters, 2014, 14(4): 2150-2156.
|
12 |
CAI G F, DARMAWAN P, CHENG X, et al. Inkjet printed large area multifunctional smart windows[J]. Advanced Energy Materials, 2017, 7: doi: 10.1002/aenm.201602598.
|
13 |
CAI G F, WANG X, CUI M Q, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy, 2015, 12: 258-267.
|
14 |
CHEN Y L, WANG Y, SUN P, et al. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications[J]. Journal of Materials Chemistry A, 2015, 3: 20614-20618.
|
15 |
BI Z J, ZHANG S D, XU X K, et al. A novel nanocomposite of WO3 modified Al-doped ZnO nanowires with enhanced electrochromic performance[J]. Materials Letters, 2015, 160: 186-189.
|
16 |
BI Z J, LI X M, CHEN Y B, et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications[J]. Electrochimica Acta, 2017, 227: 61-68.
|
17 |
CHEN Y B, BI Z J, LI X M, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures[J]. Electrochimica Acta, 2017, 224: 534-540.
|
18 |
FAN M S, KAO S Y, CHANG T H, et al. A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films[J]. Solar Energy Materials and Solar Cells, 2016, 145: 35-41.
|
19 |
BI Z J, LI X M, CHEN Y B, et al. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29872-29880.
|