1 |
EL-KADY M, STRONG V A, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.
|
2 |
HUANG Y, ZHU M, HUANG Y, et al. Multifunctional energy storage and conversion devices[J]. Advanced Materials, 2016, 28(38): 8344-8364.
|
3 |
ZHENG K, ZENG Y X, LIU S, et al. Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors[J]. Energy Storage Materials, 2019, 22: 410-417.
|
4 |
江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877.
|
|
JIANG H, LI C Z. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances[J]. CIESC Journal, 2015, 66(8): 2872-2877.
|
5 |
SAHOO R, LEE T H, PHAM D T, et al. Fast-charging high-energy battery-supercapacitor hybrid: Anodic reduced graphene oxide-vanadium(IV) oxide sheet-on-sheet heterostructure[J]. ACS Nano, 2019, 13(9): 10776-10786.
|
6 |
刘长玲, 韩丹丹. 超级电容器金属氧化物电极材料的研究进展[J]. 广东化工, 2016, 43(24): 90-91.
|
|
LIU C L, HAN D D. Research progress on metal oxides electrode materials for supercapacitors[J]. Guangdong Chemical Industry, 2016, 43(24): 90-91.
|
7 |
LIU B T, SHI X M, LANG X Y, et al. Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides[J]. Nature Communications, 2018, 9(1): 1-9.
|
8 |
LI M L, SUN G Y, YIN P P, et al. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11462-11470.
|
9 |
YU M H, ZENG Y, HAN Y, et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles[J]. Advanced Functional Materials, 2015, 25(23): 3534-3540.
|
10 |
YAN S H, ABHILASH K P, TANG L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion[J]. Small, 2019, 15(4): doi: 10.1002/smll.201804371.
|
11 |
UCHAKER E, ZHENG Y Z, LI S. Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries[J]. Journal of Materials Chemistry, 2014, 2(43): 18208-18214.
|
12 |
黄建华, 赖琼钰, 宋建梅, 等. 超级电容器用无定形V2O5电容性能研究[J]. 无机化学学报, 2007, 23(2): 237-242.
|
|
HUANG J H, LAI Q Y, SONG J M, et al. Capacitive performance of amorphous V2O5 for supercapacitor[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(2): 237-242.
|
13 |
WANG K B, ZHENG M B, SHI X B, et al. Glucose-ethanol-assisted synthesis of amorphous CoO@C core-shell composites for electrochemical capacitors electrode[J]. Chemical Engineering Journal, 2015, 266: 141-147.
|
14 |
HUANG G F, LI C P, BAI J, et al. Controllable-multichannel carbon nanofibers-based amorphous vanadium as binder-free and conductive-free electrode materials for supercapacitor[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22144-22154.
|
15 |
FANG H T, LIU M, WANG D W, et al. Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading[J]. Nano Energy, 2013, 2(6): 1232-1241.
|
16 |
LI P, XIN Y, LI Q, et al. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites[J]. Environmental Science & Technology, 2012, 46(17): 9600-9605.
|
17 |
MA K, LIU X, CHENG Q L, et al. Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays[J]. Journal of Power Sources, 2017, 357: 71-76.
|
18 |
孙贺雷, 李云飞, 易荣华, 等. N、B共掺杂MXene复合材料的制备及其电化学性能研究[J]. 储能科学与技术, 2019, 8(1): 130-137.
|
|
SUN H L, LI Y F, YI R H, et al. Preparation and characterization of electrochemical properties of nitrogen and boron co-doped MXene composite materials[J]. Energy Storage Science and Technology, 2019, 8(1): 130-137.
|
19 |
CHAN M H, LU F H. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures[J]. Thin Solid Films, 2009, 517(17): 5006-5009.
|
20 |
GLUSHENKOV A M, HULICOVA-JURCAKOVA D, LLEWELLYN D, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5[J]. Chemistry of Materials, 2010, 22(3): 914-921.
|
21 |
MA Z, RUI K, ZHANG Y, et al. Nitrogen boosts defective vanadium oxide from semiconducting to metallic merit[J]. Small, 2019, 15(22): doi: 10.1002/smll.201900583.
|
22 |
朱华威, 余海峰, 江仟仟, 等. 硼高效掺杂LiNi0.5Co0.2Mn0.3O2正极材料及其性能提升机制[J]. 化工学报, 2021, 72(1): 609-618.
|
|
ZHU H W, YU H F, JIANG Q Q, et al. Synthesis and performance improvement mechanism of high-efficiency B-doped LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. CIESC Journal, 2021, 72(1): 609-618.
|
23 |
SONG Y, LIU T Y, LI M Y, et al. Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors[J]. Advanced Energy Materials, 2018, 8(26): doi: 10.1002/aenm.201801784.
|
24 |
ARAVINDAN V, CHEAH Y L, MAK W F, et al. Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network[J]. ChemPlusChem, 2012, 77(7): doi: 10.1002/cplu.201200023.
|
25 |
MA M Y, SHI Z D, LI Y, et al. High-performance 3 V "water in salt" aqueous asymmetric supercapacitors based on VN nanowire electrodes[J]. Journal of Materials Chemistry A, 2020, 8(9): 4827-4835.
|
26 |
DONG R, SONG Y, YANG D, et al. Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage[J]. Journal of Materials Chemistry A, 2020, 8(3): 1176-1183.
|
27 |
LV W, YANG C, MENG G, et al. VO2(B) nanobelts/reduced graphene oxide composites for high-performance flexible all-solid-state supercapacitors[J]. Scientific Reports, 2019, 9(1): doi: 10.1038/s41598-019-47266-6.
|
28 |
MAK W F, WEE G, ARAVINDAN V, et al. High-energy density asymmetric supercapacitor based on electrospun vanadium pentoxide and polyaniline nanofibers in aqueous electrolyte[J]. Journal of the Electrochemical Society, 2012, 159(9): A1481-A1488.
|