储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 958-973.doi: 10.19799/j.cnki.2095-4239.2021.0163
申晓宇(), 乔荣涵, 岑官骏, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2021-04-16
修回日期:
2021-04-18
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
黄学杰
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
申晓宇(1996—),男,博士研究生,研究方向为高能量锂离子电池正极材料,E-mail:基金资助:
Xiaoyu SHEN(), Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-04-16
Revised:
2021-04-18
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xuejie HUANG
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论。本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点。硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控。金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究。液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升。对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题。理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性。界面主要涉及固态和液态电池中SEI及其可视化表征。
中图分类号:
申晓宇, 乔荣涵, 岑官骏, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.2.1—2021.3.31)[J]. 储能科学与技术, 2021, 10(3): 958-973.
Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(3): 958-973.
1 | RYU H H, PARK N Y, NOH T C, et al. Microstrain alleviation in high-energy Ni-rich ma ncma cathode for long battery life[J]. ACS Energy Letters, 2021, 6(1): 216-223. |
2 | CHU B, YOU L, LI G, et al. Revealing the role of w-doping in enhancing the electrochemical performance of the LiNi0.6Co0.2Mn0.2O2 cathode at 4.5 V[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7308-7316. |
3 | JUNG C H, KIM D H, EUM D, et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010095. |
4 | AMZIL S, ZHANG Y, QIU T, et al. {010} oriented Li1.2Mn0.54Co0.13Ni0.13O2@C nanoplate with high initial columbic efficiency[J]. Journal of Power Sources, 2021, 486: doi: 10.1016/j.jpowsour.2020.229372. |
5 | YEH N H, WANG F M, KHOTIMAH C, et al. Controlling Ni2+ from the surface to the bulk by a new cathode electrolyte interphase formation on a Ni-rich layered cathode in high-safe and high-energy-density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7355-7369. |
6 | HUANG Y, ZHU Y, FU H, et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V[J]. Angewandte Chemie-International Edition, 2021, 60(9): 4682-4688. |
7 | BIANCHINI M, SCHIELE A, SCHWEIDLER S, et al. From LiNiO2 to Li2NiO3: Synthesis, structures and electrochemical mechanisms in Li-rich nickel oxides[J]. Chemistry of Materials, 2020, 32(21): 9211-9227. |
8 | ASL H Y, MANTHIRAM A. Proton-induced disproportionation of Jahn-Teller-active transition-metal ions in oxides due to electronically driven lattice instability[J]. Journal of the American Chemical Society, 2020, 142(50): 21122-21130. |
9 | AQIL A, JEROME C, BOSCHINI F, et al. Enhancing performances of polydopamine as cathode for lithium- and potassium-ion batteries by simple grafting of sulfonate groups[J]. Batteries & Supercaps, 2021, 4(2): 374-379. |
10 | AZIB T, THAURY C, CUEVAS F, et al. Impact of surface chemistry of silicon nanoparticles on the structural and electrochemical properties of Si/Ni3Sn4 composite anode for Li-ion batteries[J]. Nanomaterials, 2021, 11(1): doi: 10.3390/nano11010018. |
11 | KARUPPIAH S, KELLER C, KUMAR P, et al. A scalable silicon nanowires-grown-on-graphite composite for high-energy lithium batteries[J]. ACS Nano, 2020, 14(9): 12006-12015. |
12 | RAZA A, JUNG J Y, LEE C H, et al. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7161-7170. |
13 | CHEN M, CAO W, WANG L, et al. Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(1): 775-783. |
14 | FENG C, LIU S, LI J, et al. Molecular understanding of electrochemical-mechanical responses in carbon-coated silicon nanotubes during lithiation[J]. Nanomaterials, 2021, 11(3): doi: 10.3390/nano11030564. |
15 | LI P, CHEN G, ZHANG N, et al. Beta-cyclodextrin as lithium-ion diffusion channel with enhanced kinetics for stable silicon anode[J]. Energy & Environmental Materials, 2021, 4(1): 72-80. |
16 | CHEN H, WU Z, SU Z, et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81: doi: 10.1016/j.nanoen.2020.105654. |
17 | CUI Y, LIU S, WANG D, et al. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode[J]. Advanced Functional Materials, 2021, 31(3): doi: 10.1002/adfm.202006380. |
18 | ABOU-RJEILY J, BEZZA I, LAZIZ N A, et al. P2-Na0.67Mn0.85Al0.15O2 and NaMn2O4 blend as cathode materials for sodium-ion batteries using a natural beta-MnO2 precursor[J]. ACS Omega, 2021, 6(2): 1064-1072. |
19 | JIN C, LIU T, SHENG O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00789-7. |
20 | ZHAI P, WANG T, JIANG H, et al. 3d artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, doi: 10.1002/adma.202006247. |
21 | LIN T C, DAWSON A, KING S C, et al. Understanding stabilization in nanoporous intermetallic alloy anodes for Li-ion batteries using operando transmission x-ray microscopy[J]. ACS Nano, 2020, 14(11): 14820-14830. |
22 | CHEN H, KE G, WU X, et al. Carbon nanotubes coupled with layered graphite to support snte nanodots as high-rate and ultra-stable lithium-ion battery anodes[J]. Nanoscale, 2021, 13(6): 3782-3789. |
23 | LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63-67. |
24 | KIM Y, JACQUET Q, GRIFFITH K J, et al. High rate lithium ion battery with niobium tungsten oxide anode[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd919. |
25 | LEE M J, LEE K, LIM J, et al. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009397. |
26 | ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. Journal of the American Chemical Society, 2019, 141(48): 19002-19013. |
27 | LEE Y, JEONG J, LIM H D, et al. Superionic si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 120-128. |
28 | TUFAIL M K, ZHOU L, AHMAD N, et al. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 407: doi: 10.1016/j.cej.2020.127149. |
29 | ADELI P, BAZAK J D, HUQ A, et al. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes[J]. Chemistry of Materials, 2021, 33(1): 146-157. |
30 | LI Y, DAIKUHARA S, HORI S, et al. Oxygen substitution for LiSiPSCl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(20): 8860-8867. |
31 | CULVER S P, SQUIRES A G, MINAFRA N, et al. Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12[J]. Journal of the American Chemical Society, 2020, 142(50): 21210-21219. |
32 | MINAFRA N, HOGREFE K, BARBON F, et al. Two-dimensional substitution: Toward a better understanding of the structure-transport correlations in the Li-superionic thio-lisicons[J]. Chemistry of Materials, 2021, 33(2): 727-740. |
33 | GAUTAM A, SADOWSKI M, GHIDIU M, et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br[J]. Advanced Energy Materials, 2021, 11(5): doi: 10.1002/aenm.202003369. |
34 | GAO Y, SUN S, ZHANG X, et al. Amorphous dual-layer coating: Enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009692. |
35 | KAUP K, ASSOUD A, LIU J, et al. Fast Li-ion conductivity in superadamantanoid lithium thioborate halides[J]. Angewandte Chemie-International Edition, 2021, 60(13): 6975-6980. |
36 | HU S, DU L, ZHANG G, et al. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13183-13190. |
37 | HYUN W J, THOMAS C M, LUU N S, et al. Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma. 202007864. |
38 | HE Y, LI H, HUO S, et al. Enabling interfacial stability via 3d networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries[J]. Journal of Power Sources, 2021, 490: doi: 10.1016/j.jpowsour.2021.229545. |
39 | ZHAO J, LIANG Y, ZHANG X, et al. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides[J]. Advanced Functional Materials, 2021, 31(8): doi: 10. 1002/adfm.202009192. |
40 | KLEIN S, WICKEREN S V, ROESER S, et al. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003738. |
41 | LI S, LI C, YANG T, et al. 3,3-diethylene di-sulfite (des) as a high-voltage electrolyte additive for 4.5 V LiNi0.8Co0.1Mn0.1O2 /graphite batteries with enhanced performances[J]. ChemElectroChem, 2021, 8(4): 745-754. |
42 | JIANG S, WU H, YIN J, et al. Benzoic anhydride as a bifunctional electrolyte additive for hydrogen fluoride capture and robust film construction over high-voltage Li-ion batteries[J]. ChemSusChem, 2021, doi: 10.1002/cssc.202100061. |
43 | LEE H J, BROWN Z, ZHAO Y, et al. Ordered LiNi0.5Mn1.5O4 cathode in bis(fluorosulfonyl)imide-based ionic liquid electrolyte: Importance of the cathode-electrolyte interphase[J]. Chemistry of Materials, 2021, 33(4): 1238-1248. |
44 | DUONG M V, TRAN M V, GARG A, et al. Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell[J]. International Journal of Energy Research, 2021, 45(3): 4133-4144. |
45 | HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00783-z. |
46 | YU Z, WANG H, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. |
47 | KLEIN S, HARTE P, HENSCHEL J, et al. On the beneficial impact of Li2CO3 as electrolyte additive in NCM523∥graphite lithium ion cells under high-voltage conditions[J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003756. |
48 | INTAN N N, PFAENDTNER J. Effect of fluoroethylene carbonate additives on the initial formation of the solid electrolyte interphase on an oxygen-functionalized graphitic anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8169-8180. |
49 | YANG J, LIU Q, PUPEK K Z, et al. Molecular engineering to enable high-voltage lithium-ion battery: From propylene carbonate to trifluoropropylene carbonate[J]. ACS Energy Letters, 2021, 6(2): 371-378. |
50 | GAO J, HAN S, HUA H, et al. Phenyl trifluoromethane sulfonate as a novel electrolyte additive for enhancing performance of LiNi0.6Mn0.2Co0.2O2/graphite cells working in wide temperature ranges[J]. Journal of Power Sources, 2021, 487: doi: 10.1016/j.jpowsour.2020.229416. |
51 | PARK S, JEONG S Y, LEE T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications, 2021, 12(1): 838-838. |
52 | CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. |
53 | ZHANG N, SUN C, HUANG Y, et al. Tuning electrolyte enables microsized sn as an advanced anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(3): 1812-1821. |
54 | WANG C W, REN F C, ZHOU Y, et al. Engineering the interface between LiCoO2 and Li10GeP2S12-solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries[J]. Energy & Environmental Science, 2021, 14(1): 437-450. |
55 | KAWASOKO H, SHIRASAWA T, NISHIO K, et al. Clean solid-electrolyte/electrode interfaces double the capacity of solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5861-5865. |
56 | LANGDON J, MANTHIRAM A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010267. |
57 | LIU X, ZHENG B, ZHAO J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003583. |
58 | BALASUBRAMANIAM R, NAM C W, ARAVINDAN V, et al. Interfacial engineering in a cathode composite based on garnet-type solid-state Li-ion battery with high voltage cycling[J]. Chemelectrochem, 2021, 8(3): 570-576. |
59 | YAMAGISHI Y, MORITA H, NOMURA Y, et al. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 580-586. |
60 | KRAFT L, ZUEND T, SCHREINER D, et al. Comparative evaluation of lmr-ncm and nca cathode active materials in multilayer lithium-ion pouch cells: Part ii. Rate capability, long-term stability, and thermal behavior[J]. Journal of the Electrochemical Society, 2021, 168(2): doi: 10.1149/1945-7111/abe50c. |
61 | RANDAU S, WALTHER F, NEUMANN A, et al. On the additive microstructure in composite cathodes and alumina-coated carbon microwires for improved all-solid-state batteries[J]. Chemistry of Materials, 2021, 33(4): 1380-1393. |
62 | WANG C, SUN X, YANG L, et al. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): doi: 10.1002/admi.202001698. |
63 | WU T, QI J, XU M, et al. Selective S/Li2S conversion via in-built crystal facet self-mediation: Toward high volumetric energy density lithium-sulfur batteries[J]. ACS Nano, 2020, 14(11): 15011-15022. |
64 | SHI Z, SUN Z, CAI J, et al. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries[J]. Advanced Functional Materials, 2021, 31(4): doi: 10.1002/adfm. 202006798. |
65 | FAN X, YUAN R, LEI J, et al. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893. |
66 | MA J, QIAO Y, HUANG M, et al. Low tortuosity thick cathode design in high loading lithium sulfur batteries enabled by magnetic hollow carbon fibers[J]. Applied Surface Science, 2021, 542: doi: 10.1016/j.apsusc.2020.148664. |
67 | ALZAHRANI A S, OTAKI M, WANG D, et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 413-418. |
68 | CHEN P, WU Z, GUO T, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials, 2021, 33(9): doi: 10.1002/adma.202007549. |
69 | LIU Y T, WANG L, LIU S, et al. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery[J]. Science China-Materials, 2021, doi: 10.1007/s40843-020-1552-7. |
70 | BICHON M, SOTTA D, DE VITO E, et al. Performance and ageing behavior of water-processed LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cells[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour.2020.229097. |
71 | HEISKANEN S K, LASZCZYNSKI N, LUCHT B L. Perspective-surface reactions of electrolyte with LiNixNoyNnzN2 cathodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab981c. |
72 | LIU Z, MA S, MU X, et al. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11985-11994. |
73 | XU C, KOU X, LIU D, et al. Vertically aligned architecture in the dense and thick TiO2-graphene nanosheet electrode towards high volumetric and areal capacities[J]. Electrochimica Acta, 2021, 370: doi: 10.1016/j.electacta.2021.137770. |
74 | FU A, WANG C, PENG J, et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm. 202009805. |
75 | LI J, LIN C, WENG M, et al. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nature Nanotechnology, 2021, doi: 10.1038/s41565-021-00855-x. |
76 | HUANG D, ENGTRAKUL C, NANAYAKKARA S, et al. Understanding degradation at the lithium-ion battery cathode/electrolyte interface: Connecting transition-metal dissolution mechanisms to electrolyte composition[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11930-11939. |
77 | PAPP J K, LI N, KAUFMAN L A, et al. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials[J]. Electrochimica Acta, 2021, 368: doi: 10.1016/j.electacta.2020.137505. |
78 | KANG J, TAKAI S, YABUTSUKA T, et al. Relaxation analysis of LixNi0.8Co0.1Mn0.1O2 after lithium extraction to high-voltage region(x≤0.12)[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd834. |
79 | HU J, WANG Q, WU B, et al. Fundamental linkage between structure, electrochemical properties, and chemical compositions of LiNi1-x-yMnxCoyO2 cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2622-2629. |
80 | NGUYEN T T, VILLANOVA J, SU Z, et al. 3d quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by X-ray holographic nano-tomography[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003529. |
81 | SUN T, SUN G, YU F, et al. Soft X-ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode[J]. ACS Nano, 2021, 15(1): 1475-1485. |
82 | MICHAEL H, IACOVIELLO F, HEENAN T M M, et al. A dilatometric study of graphite electrodes during cycling with X-ray computed tomography[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd648. |
83 | CHOI P, PARIMALAM B S, SU L, et al. Operando particle-scale characterization of silicon anode degradation during cycling by ultrahigh-resolution X-ray microscopy and computed tomography[J]. ACS Applied Energy Materials, 2021, 4(2): 1657-1665. |
84 | DUTOIT C E, TANG M, GOURIER D, et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-21598-2. |
85 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
86 | OTOYAMA M, YAMAOKA T, ITO H, et al. Visualizing local electrical properties of composite electrodes in sulfide all-solid-state batteries by scanning probe microscopy[J]. Journal of Physical Chemistry C, 2021, 125(5): 2841-2849. |
87 | FATHIANNASAB H, ZHU L, CHEN Z. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour. 2020.229028. |
88 | BRUGGE R H, CHATER R J, KILNER J A, et al. Experimental determination of Li diffusivity in LLZO using isotopic exchange and FIB-SIMS[J]. Journal of Physics Energy, 2021, 3(3): doi: 10.1088/2515-7655/abe2f7. |
89 | BENAYAD A, MORALES-UGARTE J E, SANTINI C C, et al. Operando XPS: A novel approach for probing the lithium/electrolyte interphase dynamic evolution[J]. The Journal of Physical Chemistry A, 2021, 125(4): 1069-1081. |
90 | PARK J, BAE K T, KIM D, et al. Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3d digital twin structural analysis[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105456. |
91 | PARK H, YU S, SIEGEL D J Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Letters, 2021, 6(1): 150-157. |
92 | YANG M, LIU Y, NOLAN A M, et al. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma. 202008081. |
93 | CHEKUSHKIN P M, MERENKOV I S, SMIRNOV V S, et al. The physical origin of the activation barrier in Li-ion intercalation processes: The overestimated role of desolvation[J]. Electrochimica Acta, 2021, 372: doi: 10.1016/j.electacta.2021.137843. |
94 | BOYLE D T, HUANG W, WANG H, et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00787-9. |
95 | NANDA S, MANTHIRAM A. Delineating the lithium-electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003293. |
96 | SEITZMAN N, BIRD O F, ANDRYKOWSKI R, et al. Operando X-ray tomography imaging of solid-state electrolyte response to Li evolution under realistic operating conditions[J]. ACS Applied Energy Materials, 2021, 4(2): 1346-1355. |
97 | GONG C, PU S D, GAO X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003118. |
98 | XU Y, WU H, JIA H, et al. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy[J]. ACS Nano, 2020, 14(7): 8766-8775. |
99 | RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202015238. |
100 | LEWIS J A, CORTES F J Q, LIU Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography[J]. Nature Materials, 2021, doi: 10.1038/s41563-020-00903-2. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[7] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[8] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[11] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[12] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[13] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[14] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[15] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||