储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 958-973.doi: 10.19799/j.cnki.2095-4239.2021.0163

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2021.2.12021.3.31

申晓宇(), 乔荣涵, 岑官骏, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100191
  • 收稿日期:2021-04-16 修回日期:2021-04-18 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 黄学杰 E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:申晓宇(1996—),男,博士研究生,研究方向为高能量锂离子电池正极材料,E-mail:shenxiaoyu19@mails.ucas.ac.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100)

Reviews of selected 100 recent papers for lithium batteriesFeb. 1 2021 to Mar. 31 2021

Xiaoyu SHEN(), Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
  • Received:2021-04-16 Revised:2021-04-18 Online:2021-05-05 Published:2021-04-30
  • Contact: Xuejie HUANG E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论。本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点。硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控。金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究。液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升。对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题。理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性。界面主要涉及固态和液态电池中SEI及其可视化表征。

关键词: 锂电池, 正极材料, 负极材料, 固体电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 2566 papers online from Feb. 1, 2021 to Mar. 31, 2021. 100 of them were selected to be highlighted. Studies on layered-oxide cathode material foucus on doping, surface coating, preparation of precursors and structural evolution with cycling, among which, investigation on high-nickel ternary layered oxides attracts large attention. Volume expansion and subsequent problems is the focus of silicon-based anode materials, and research is mainly on coating of silicon particles, fabricating composite silicon-based anodes and microstructure control. Other anodes such as lithium metal, graphite and oxide electrode are also involved. Among them, researchs on the interface of lithium and design of three-dimensional structure anode are the main topic. As for solid state electrolytes, investigations mainly include the synthesis, doping and analyses of sulfide, oxide and polymer-oxide composite solid electrolyte. In terms of liquid electrolyte, electrolytes and additives for high-voltage ternary layered oxide cathodes and metal lithium anodes, regulation for positive/negative interface layers, and the performance improvement of graphite and silicon anodes is developed. For solid-state batteries, the preparation and design of composite positive electrodes, surface modification of active materials, and lithium metal/solid electrolyte interface are the main contents. To suppress the “shuttle effect” of Li-S battery, composite sulfur cathode based on catalysis, high ion/electronic conductive matrix, and other battery technologies are developed. The characterization analysis part covers lithium metal deposition, the volume expansion of graphite and silicon anodes, microstructure, dissolved transition metal elements and gas generation of cathode. Degraded interface contact in solid-state batteries, the deposition and peeling of lithium anodes, and the stability of the electrode interface is involved in theoretical simulation work part. The interface related studies involve SEI and the visual characterization in solid-state and liquid batteries mainly.

Key words: lithium batteries, cathode material, anode material, solid state electrolyte, battery technology

中图分类号: