储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 974-986.doi: 10.19799/j.cnki.2095-4239.2020.0409

• 储能材料与器件 • 上一篇    下一篇

金属锂的钝化保护及应用

李伟辉(), 钟兴国, 李会巧()   

  1. 华中科技大学材料科学与工程学院,湖北 武汉 430074
  • 收稿日期:2020-12-19 修回日期:2021-01-22 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 李会巧 E-mail:m201870835@hust.edu.cn;hqli@hust.edu.cn
  • 作者简介:李伟辉(1996—),男,硕士研究生,主要研究方向为空气稳定锂金属负极,E-mai:m201870835@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(52072138)

The passivation of Li anode and its application in energy storage

Weihui LI(), Xingguo ZHONG, Huiqiao LI()   

  1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2020-12-19 Revised:2021-01-22 Online:2021-05-05 Published:2021-04-30
  • Contact: Huiqiao LI E-mail:m201870835@hust.edu.cn;hqli@hust.edu.cn

摘要:

锂金属是高能量密度电池的研究重点之一,也是锂空、锂硫、全固态电池等新型电池中负极材料的重要候选者。然而锂金属本身具有高的活性,易与各种溶剂和空气中各类物质快速反应并可能引发起火、燃烧、爆炸等安全风险以及后续电化学性能的劣化。因此发展金属锂钝化技术提高其在空气中的稳定性具有重要的意义。本文首先简述了锂金属在空气中腐蚀与损耗的机理,提出金属锂与多种物质不可控的反应是造成应用安全问题的重要原因,接着从三个方面介绍了金属锂负极钝化技术的进展,包括:①利用ALD、MLD、磁控溅射以及真空镀膜和高分子涂膜等物理镀膜或涂层工艺实现物理保护;②通过表面原位化学反应对锂表面处理生成锂合金、无机化合物、固体电解质和有机化合物等保护层;③通过巧妙的整体结构设计来获得稳定的金属锂负极。并结合其工艺原理分别分析了各个方法优缺点。综述了金属锂负极钝化技术在预锂化、传统电解液体系锂基电池和全固态锂电池等能源存储领域中的应用。最后,针对三种方法的特点,从解决高昂成本和整体环境保护等问题的角度展望了金属锂负极钝化加工技术未来的可能发展方向。

关键词: 锂金属负极, 高能电池, 空气稳定性, 表面钝化, 预锂化

Abstract:

Lithium (Li) metal anode is a highly promising candidate for next-generation high-energy-density batteries, leading the future development of batteries to satisfy the ever-growing demand of energy storage. However, the uncontrollable reaction happens easily when ultrahigh active metallic lithium is exposed to the ambient environment, induce deterioration of electrochemical properties or even severe safety issues such as fire, combustion, explosion. The stabilization (passivation) of Li is of great significance to the safety and simplicity of industrial application. This review first briefly introduces the corrosion mechanism of lithium metal in air and suggests that the uncontrolled reaction of lithium metal with a variety of substances is an important cause of application safety problems. It then introduces the progress of lithium metal anode passivation technology from three aspects, including: i. physical protection by ex-situ physical coating such as ALD, MLD, magnetron sputtering and vacuum coating and spin coating; ii. lithium surface treatment by in-situ surface chemistry to produce protective layers such as lithium alloys, inorganic compounds, solid electrolytes and organic compounds; iii. architecture design to obtain a stable lithium metal anode. The advantages and disadvantages of each method are also analysed in relation to their process principles. Afterwards, the passivation mechanism and recent progress of application such as pre-lithiation, lithium-based batteries in conventional electrolyte systems and all-solid-state lithium batteries in energy storage are discussed. Finally, we propose some possible perspectives of lithium metal anode passivation technology in terms of addressing issues such as high costs and overall environmental protection.

Key words: lithium metal anode, high-energy batteries, air stability, surface passivation, pre-lithiation

中图分类号: