1 |
程广玉, 刘新伟, 顾洪汇, 等. 预锂化对锂离子电池贮存寿命的影响[J]. 储能科学与技术, 2020, 9(2): 626-632.
|
|
CHENG G Y, LIU X W, GU H H, et al. Effect of pre-lithiation on storage life of lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 626-632.
|
2 |
刘勇. LiFePO4锂离子电池满电荷存储寿命的研究[D]. 长沙: 国防科学技术大学, 2013.
|
|
LIU Y. The storage life of LiFePO4 battery at full state of charge[D]. Changsha: National University of Defense Technology, 2013.
|
3 |
HONKURA K, TAKAHASHI K, HORIBA T. Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources, 2011, 196(23): 10141-10147.
|
4 |
LIU Y, XIE K, PAN Y, et al. Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries[J]. Solid State Ionics, 2018, 320: 126-131.
|
5 |
KEIL P, SCHUSTER S F, WILHELM J, et al. Calendar aging of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(9): A1872-A1880.
|
6 |
DUBARRY M, QIN N, BROOKER P. Calendar aging of commercial Li-ion cells of different chemistries-A review[J]. Current Opinion in Electrochemistry, 2018, 9: 106-113.
|
7 |
BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|
8 |
LIU K L, ASHWIN T R, HU X S, et al. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2020, 131: doi:10.1016/j.rser.2020.110017.
|
9 |
REDONDO-IGLESIAS E, VENET P, PELISSIER S. Global model for self-discharge and capacity fade in lithium-ion batteries based on the generalized Eyring relationship[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 104-113.
|
10 |
KEIL P, JOSSEN A. Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking[J]. Journal of the Electrochemical Society, 2016, 164(1): A6066-A6074.
|
11 |
MARKOVSKY B, RODKIN A, COHEN Y S, et al. The study of capacity fading processes of Li-ion batteries: Major factors that play a role[J]. Journal of Power Sources, 2003, 119/120/121: 504-510.
|
12 |
ABRAHAM D P, KNUTH J L, DEES D W, et al. Performance degradation of high-power lithium-ion cells—Electrochemistry of harvested electrodes[J]. Journal of Power Sources, 2007, 170(2): 465-475.
|
13 |
庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6): 1044-1057.
|
|
ZHUANG Q C, XU S D, QIU X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6): 1044-1057.
|
14 |
WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4065-4069.
|
15 |
SON K, HWANG S M, WOO S G, et al. Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method[J]. Journal of Power Sources, 2019, 440: doi:10.1016/j.jpowsour.2019.227083.
|
16 |
FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
|