储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 974-986.doi: 10.19799/j.cnki.2095-4239.2020.0409
收稿日期:
2020-12-19
修回日期:
2021-01-22
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
李会巧
E-mail:m201870835@hust.edu.cn;hqli@hust.edu.cn
作者简介:
李伟辉(1996—),男,硕士研究生,主要研究方向为空气稳定锂金属负极,E-mai:基金资助:
Weihui LI(), Xingguo ZHONG, Huiqiao LI()
Received:
2020-12-19
Revised:
2021-01-22
Online:
2021-05-05
Published:
2021-04-30
Contact:
Huiqiao LI
E-mail:m201870835@hust.edu.cn;hqli@hust.edu.cn
摘要:
锂金属是高能量密度电池的研究重点之一,也是锂空、锂硫、全固态电池等新型电池中负极材料的重要候选者。然而锂金属本身具有高的活性,易与各种溶剂和空气中各类物质快速反应并可能引发起火、燃烧、爆炸等安全风险以及后续电化学性能的劣化。因此发展金属锂钝化技术提高其在空气中的稳定性具有重要的意义。本文首先简述了锂金属在空气中腐蚀与损耗的机理,提出金属锂与多种物质不可控的反应是造成应用安全问题的重要原因,接着从三个方面介绍了金属锂负极钝化技术的进展,包括:①利用ALD、MLD、磁控溅射以及真空镀膜和高分子涂膜等物理镀膜或涂层工艺实现物理保护;②通过表面原位化学反应对锂表面处理生成锂合金、无机化合物、固体电解质和有机化合物等保护层;③通过巧妙的整体结构设计来获得稳定的金属锂负极。并结合其工艺原理分别分析了各个方法优缺点。综述了金属锂负极钝化技术在预锂化、传统电解液体系锂基电池和全固态锂电池等能源存储领域中的应用。最后,针对三种方法的特点,从解决高昂成本和整体环境保护等问题的角度展望了金属锂负极钝化加工技术未来的可能发展方向。
中图分类号:
李伟辉, 钟兴国, 李会巧. 金属锂的钝化保护及应用[J]. 储能科学与技术, 2021, 10(3): 974-986.
Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage[J]. Energy Storage Science and Technology, 2021, 10(3): 974-986.
1 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
2 | LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
3 | BITTIHN R, HERR R, HOGE D. The SWING system, a nonaquo us rechargeable carbon/metal oxide cell[J]. Journal of Power Sources, 1993, 43(1/2/3): 223-231. |
4 | LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
5 | WU F, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 20 17, 10(2): 435-459. |
6 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
7 | BALAISH M, PELED E, GOLODNITSKY D, et al. Liquid-free lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2015, 54(2): 436-440. |
8 | YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200. |
9 | HU Y, ZHANG T, CHENG F, et al. Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries[J]. Angewandte Chemie-International Edition, 2015, 54(14): 4338-4343. |
10 | WU N, YANG Z Z, YAO H R, et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnes ium battery by lithium-magnesium co-intercalation[J]. Angewandte Chemie-International Edition, 2015, 54(19): 5757-5761. |
11 | WU F, LV H, CHEN S, et al. Natural vermiculite enables high-performance in lithium-sulfur batteries via electrical double layer effects[J]. Advanced Functional Materials, 2019, 29(27): doi: 10.1002/adfm.20 1902820. |
12 | WU F, SROT V, CHEN S, et al. 3D honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery[J]. Advanced Materials, 2019, 31(43): doi: 10.1002/adma.20 1905146. |
13 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
14 | WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
15 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302. |
16 | ZHANG Y, LV W, HUANG Z, et al. An air-stable and waterproof lithium metal anode enabled by wax composite packaging[J]. Science Bulletin, 2019, 64(13): 910-917. |
17 | KANG T, WANG Y, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science, 2019, 5(3): 468-476. |
18 | LI Y, LI Y, SUN Y, et al. Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas enviro nments[J]. Nano Letters, 2017, 17(8): 5171-5178. |
19 | KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892. |
20 | ALABOINA P K, RODRIGUES S, ROTTMAYER M, et al. In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition[J]. ACS Applied Materials Interfaces, 2018, 10(38): 32801-32808. |
21 | ADAIR K R, ZHAO C, BANIS M N, et al. Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems[J]. Angewandte Chemie-International Edition, 2019, 58(44): 15797-15802. |
22 | XU Q, LIN J, YE C, et al. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.20 1903292. |
23 | LIU W, GUO R, ZHAN B, et al. Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells[J]. ACS Applied Energy Materials, 2018, 1(4): 1674-1679. |
24 | QU S, JIA W, WANG Y, et al. Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance[J]. Electrochimica Acta, 2019, 317: 120-127. |
25 | CHOI S M, KANG I S, SUN Y K, et al. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode[J]. Journal of Power Sources, 2013, 244: 363-368. |
26 | XU J J, LIU Q C, YU Y, et al. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries[J]. Advanced Materials, 2017, 29(24): doi:10.1002/adma.201606552. |
27 | LIU K, PEI A, LEE H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139(13): 4815-4820. |
28 | CAO Z, XU P, ZHAI H, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240. |
29 | YANG T, JIA P, LIU Q, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie-International Edition, 2018, 57(39): 12750-12753. |
30 | ZHAO J, LU Z, LIU N, et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nature Communications, 2014, 5(1): 5088. |
31 | ZHAO J, LU Z, WANG H, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiat ion reagent for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(26): 8372-8375. |
32 | ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7408-7413. |
33 | LIN D, LIU Y, CHEN W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon[J]. Nano Letters, 2017, 17(6): 3731-3737. |
34 | ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemical Society, 2017, 139(33): 11550-11558. |
35 | LIANG J, LI X, ZHAO Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): doi: 10.1002/aenm.20 1902125. |
36 | LIAO K, WU S, MU X, et al. Developing a "water-defendable" and "dendrite-free" lithium-metal anode using a simple and promising GeCl4 pretreatment method[J]. Advanced Materials, 2018, 30(36): doi: 10.1002/adma.20 1705711. |
37 | XIE M, LIN X, HUANG Z, et al. A Li-Al-O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002adfm.20 1905949. |
38 | LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes[J]. Advanced Materials, 2019, 31(3): doi: 10.1002/adma.201806470. |
39 | LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphas e layer for long-life lithium metal anodes[J]. Angewandte Chemie-International Edition, 2018, 57(6): 1505-1509. |
40 | WANG G, CHEN C, CHEN Y, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahi gh-rate and large-capacity lithium-metal anode[J]. Angewandte Chemie-International Edition, 2020, 59(5): 2055-2060. |
41 | ZHANG X, ZHANG Q, WANG X G, et al. An extremely simple method for protecting lithium anodes in Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2018, 57(39): 12814-12818. |
42 | JIANG Z, JIN L, HAN Z, et al. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with impro ved moisture stability[J]. Angewandte Chemie-International Edition, 2019, 58(33): 11374-11378. |
43 | LIU X, LIU J, QIAN T, et al. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode[J]. Advanced Materials, 2020, 32(2): doi: 10.1002/adma.201902724. |
44 | SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-08767-0. |
45 | CHENG H, MAO Y, LU Y, et al. Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-perforance lithium-oxygen cells[J]. Nanoscale, 2020, 12(5): 3424-3434. |
46 | DONG L, NIE L, LIU W. Water-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene arch itecture[J]. Advanced Materials, 2020, 32(14):doi: 10.1002/adma.20 1908494. |
47 | ZHAO J, ZHOU G, YAN K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017, 12(10): 993-999. |
48 | WANG Y, SHEN Y, DU Z, et al. A lithium-carbon nanotube composite for stable lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5(45): 23434-24439. |
49 | ZHENG L, GUO F, KANG T, et al. Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate[J]. Nano Research, 2020, 13(5): 1324-1331. |
50 | ARAVINDAN V, LEE Y S, MADHAVI S. Best practices for mitiatng irreversible capacity loss of negative electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201602607. |
51 | 聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903. |
NIE P, XU G, JIANG J, et al. Prelithiation technol ogies and application in high energy silicon anodes[J]. Energy Storage Science and Technology, 2017, 6(5): 889-903. | |
52 | WANG G, LI F, LIU D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8699-8703. |
53 | SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
54 | WANG R, CUI W, CHU F, et al. Lithium metal anodes: Present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. |
55 | LANG J, QI L, LUO Y, et al. High performance lithium metal anode: Progress and prospects[J]. Energy Storage Materials, 2017, 7: 115-129. |
56 | GHAZI Z A, SUN Z, SUN C, et al. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15(32): doi: 10.1002/smll.201900687. |
57 | 张魏栋, 范 磊, 朱守圃, 等. 高容量锂硫电池近期研究进展[J]. 储能科学与技术, 2017, 6(3): 534-549. |
ZHANG W D, FAN L, ZHU S P, et al. Recent developments in high-energy lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. | |
58 | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. | |
59 | XIA S, WU X, ZHANG Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4): 753-785. |
60 | PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: Challenges, progress, and outlook[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22029-22050. |
61 | YANG L, SONG Y, LIU H, et al. Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer[J]. Small Methods, 2020, 4(3): doi: 10.1002/smtd.202070014. |
62 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
63 | CHUNG H, KANG B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell[J]. Chemistry of Materials, 2017, 29(20): 8611-8619. |
64 | LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2): 591-599. |
65 | HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10Ge P2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.20 1501590. |
66 | WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33. |
[1] | 程广玉, 刘新伟, 梅悦旎, 顾洪汇, 杨丞, 王可. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. |
[2] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[3] | 郭义敏, 郭德超, 张啟文, 龙超, 何凤荣. 电极结构对锂离子电容器电性能的影响[J]. 储能科学与技术, 2021, 10(6): 2106-2111. |
[4] | 赵清江, 张贵锋. 硬碳的预锂化及其电化学性能[J]. 储能科学与技术, 2021, 10(6): 2112-2116. |
[5] | 赵鹤, 韩策, 程小露, 郝维健, 徐涵颖, 耿萌萌, 杨凯, 赵丰刚, 邱新平. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
[6] | 余晨露, 田晓华, 张哲娟, 孙 卓. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
[7] | 冯建文, 胡时光, 韩 兵, 肖映林, 邓永红, 王朝阳. 锂金属电池电解液组分调控的研究进展[J]. 储能科学与技术, 2020, 9(6): 1629-1640. |
[8] | 张刚, 刘兴稳, 张帆, 陈至炜. 高首效长寿命硅碳复合材料的制备及其电化学性能[J]. 储能科学与技术, 2020, 9(3): 826-830. |
[9] | 程广玉, 刘新伟, 顾洪汇, 高蕾, 王可. 预锂化对锂离子电池贮存寿命的影响[J]. 储能科学与技术, 2020, 9(2): 626-632. |
[10] | 聂 平,徐桂银,蒋江民,王 江,付瑞瑞,方 姗,窦 辉,张校刚. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903. |
[11] | 张魏栋,范 磊,朱守圃,陆盈盈. 高容量锂硫电池近期研究进展[J]. 储能科学与技术, 2017, 6(3): 534-549. |
[12] | 明 海1,2,明 军3,4,邱景义1,2,张文峰1,2,张松通1,2,曹高萍1,2. 预锂化技术在能源存储中的应用[J]. 储能科学与技术, 2017, 6(2): 223-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||