1 |
LIU K, LIU Y Y, LIN D D, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): doi:10.1126/sciadv.aas9820
|
2 |
ZHOU J, NOTTEN P H. Studies on the degradation of Li-ion batteries by the use of microreference electrodes[J]. Journal of Power Sources, 2008, 177: 553-560.
|
3 |
XIAO J F, LI J, XU Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25.
|
4 |
MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069.
|
5 |
NAPPORN T W, HOLADE Y, KOKOH B, et al. Fuel cells and hydrogen: Electrochemical measurement methods and characterization on the cell level[M]. USA: Elsevier, 2018.
|
6 |
KOCH V R, NANJUNDIAH C, APPETECCHI G B, et al. The interfacial stability of Li with two new solvent-free ionic liquids: 1,2-dimethyl-3-propylimidazolium imide and methide[J]. Journal of the Electrochemical Society, 1995, 142(7): L116-L118.
|
7 |
ENDER M, WEBER A, IVERS-TIFFEE E. Analysis of three-electrode setups for AC-impedance measurements on lithium-ion cells by FEM simulations[J]. Journal of the Electrochemical Society, 2011, 159(2): A128-A136.
|
8 |
BLYR A, SIGALA C, AMATUCCI G, et al. Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements[J]. Journal of the Electrochemical Society, 1998, 145(1): 194-209.
|
9 |
WU Q W, LU W Q, PRAKASH J. Characterization of a commercial size cylindrical Li-ion cell with a reference electrode[J]. Journal of Power Sources, 2000, 88: 237-242.
|
10 |
LI Y L, HAN X B, FENG X N, et al. Errors in the reference electrode measurements in real lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: 228933.
|
11 |
DOLLE M, ORSINI F, GOZDZ A S, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A851-A857.
|
12 |
VERBRUGGE M W, BAKERB D R, KOCH B J. Mathematical modeling of high-power-density insertion electrodes for lithium ion batteries[J]. Journal of Power Sources, 2002, 110: 295-309.
|
13 |
LA MANTIA F, WESSELLS C D, DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 141-144.
|
14 |
MCTURK E, BIRKL C R, ROBERTS M R, et al. Minimally invasive insertion of reference electrodes into commercial lithium-ion pouch cells[J]. ECS Electrochemistry Letters, 2015, 4 (12): A145-A147.
|
15 |
THURSTON C G, OWEN J R, HARGREAVES N J. Diffusional limitations at the lithium polymer electrolyte interface[J]. Journal of Power Sources, 1992, 39(2): 215-224.
|
16 |
ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells[J]. Electrochimica Acta, 2004, 49: 4763-4775.
|
17 |
AMINE K, CHEN C H, LIU J, et al. Factors responsible for impedance rise in high power lithium ion batteries[J]. Journal of Power Sources, 2001(97/98): 684-687.
|
18 |
ZHOU J, NOTTEN P H. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems[J]. Journal of the Electrochemical Society, 2004, 151(12): A2173-A2179.
|
19 |
SOLCHENBACH S, PRITZL D, KONG E J, et al. A gold micro-reference electrode for impedance and potential measurements in lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(10): A2265-A2272.
|
20 |
ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160: 1349-1354.
|
21 |
BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. Journal of the Electrochemical Society, 2013, 160(10): A1668-A1674.
|
22 |
ZHOU X, ZHOU P, ZHENG Y J, et al. Strategy of fast charging of lithium-ion batteries without lithium plating in a wide temperature range[J]. Journal of Automotive Safety and Energy, 2020, 11(3): 397-405.
|
23 |
WALDMANN T, KASPER M, WOHLFAHRT-MEHRENS M. Optimization of charging strategy by prevention of lithium deposition on anodes in high-energy lithium-ion batteries-electrochemical experiments[J]. Electrochimica Acta, 2015, 178: 525-532.
|
24 |
BELT J R, BERNARDI D M, UTGIKARB V. Development and use of a lithium-metal reference electrode in aging studies of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A1116-A1126.
|
25 |
ARMAND M B, CHABAGNO J M, DUCLOT M J. Fast ion transport in solids[M]. Amsterdam: North Holland Publishers, 1979.
|
26 |
CHU Z Y, FENG X N, LIAW B, et al. Testing lithium-ion battery with the internal reference electrode: an insight into the blocking effect[J]. Journal of the Electrochemical Society, 2018, 165(14): A3240-A3248.
|