1 |
黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术: 化学电源技术丛书[M]. 北京: 化学工业出版社, 2011.
|
2 |
王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677.
|
|
WANG X B, ZHAO Q S, CHENG Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677.
|
3 |
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
|
4 |
POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499.
|
5 |
ZHANG J J, YU A S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries[J]. Science Bulletin, 2015, 60(9): 823-838.
|
6 |
RAHMAN M M, WANG J Z, WEXLER D, et al. Silver-coated TiO2 nanostructured anode materials for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(4): 571-578.
|
7 |
KOU T Y, YAO B, LIU T, et al. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(33): 17151-17173.
|
8 |
JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials, 2012, 24(38): 5166-5180.
|
9 |
YAO S, SHI Z, ZHANG X, et al. Synthesis and electrochemical properties of α-Fe2O3 porous microrods as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 794: 333-340.
|
10 |
YE J C, BAUMGAERTEL A C, WANG Y M, et al. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries[J]. ACS Nano, 2015, 9(2): 2194-2202.
|
11 |
HUANG S Z, JIN J, CAI Y, et al. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries[J]. Nanoscale, 2014, 6(12): 6819-6827.
|
12 |
HUANG S Z, CAI Y, JIN J, et al. Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability[J]. Journal of Materials Chemistry, 2016, 4(11): 4264-4272.
|
13 |
LI Y, FU Z Y, SU B L, et al. Hierarchically structured porous materials for energy conversion and storage[J]. Advanced Functional Materials, 2012, 22(22): 4634-4667.
|
14 |
YUE J, GU X, CHEN L, et al. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(41): 17421-17426.
|
15 |
XU X, CAO R, JEONG S, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano Letters, 2012, 12(9): 4988-4991.
|
16 |
LI J, LI Z, NING F, et al. Ultrathin mesoporous Co3O4 nanosheet arrays for high-performance lithium-ion batteries[J]. ACS Omega, 2018, 3(2): 1675-1683.
|
17 |
LI T, ZOU H L, FU J X, et al. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance[J]. Advanced Functional Materials, 2010, 20: 617-623.
|
18 |
HAN W J, QIN X Y, WU J X, et al. Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries[J]. Nano Research, 2018, 11(2): 892-904.
|
19 |
LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale, 2013, 5(3): 1168-1175.
|
20 |
LEE S W, LEE C W, YOON S B, et al. Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries[J]. Journal of Power Sources, 2016, 312(30): 207-215.
|
21 |
WANG, Z, LUAN D Y, HU Y, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy and Environmental Science, 2012, 5: 5252-5256.
|
22 |
KIM N Y, LEE G, CHOI J. Fast-charging and high volumetric capacity anode based on Co3O4/CuO@TiO2 composites for lithium-ion batteries[J]. Chemistry, 2018, 24(71): 19045-19052.
|
23 |
LI W, SHANG K, LIU Y, et al. A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 985-991.
|
24 |
YUAN Y F, CHEN F, YE L W, et al. Construction of Co3O4@TiO2 heterogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties[J]. Journal of Alloys and Compounds, 2019, 790: 814-821.
|
25 |
WANG D X, WANG Y, LI Q Y, et al. Urchin-like α-Fe2O3/MnO2, hierarchical hollow composite microspheres as lithium-ion battery anodes[J]. Journal of Power Sources, 2018, 393: 186-192.
|
26 |
ZHANG Y L, CAO W Q, CAI Y Z, et al. Rational design of NiFe2O4-rGO by tuning the compositional chemistry and its enhanced performance for a Li-ion battery anode[J]. Inorganic Chemistry Frontiers, 2019, 6(4): 961-968.
|
27 |
FENG D Y, YANG H, GUO X Z, et al. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries[J]. Chemical Engineering Journal, 2019, 355: 687-696.
|
28 |
WANG L, BOCK D C, LI J, et al. Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8770-8785.
|
29 |
FU J X, WONG W T, LIU W R. Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries[J]. RSC Advances, 2015, 5(93): 75838-75845.
|
30 |
MA J J, WANG H J, YANG X, et al. Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frame works as anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 12038-12043.
|
31 |
CHU K N, LI Z Q, XU S K, et al. MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes[J]. Dalton Transactions, 2020, 49(31): 10808-10815.
|
32 |
MUSA N, WOO H J, TEO L P, et al. Optimization of Li2SnO3 synthesis for anode material application in Li-ion batteries[J]. Materials Today: Proceedings, 2017, 4(4): 5169-5177.
|
33 |
DENG S, ZHU H, WANG G, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency[J]. Nature Communications, 2020, 11(1): 132-143.
|
34 |
SHEN S, GUO W, XIE D, et al. A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays[J]. Journal of Materials Chemistry A, 2018, 6(41): 20195-20204.
|
35 |
ISLAM M, ALI G, JEONG M G, et al. Study on the electrochemical reaction mechanism of NiFe2O4 as a high-performance anode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14833-14843.
|