储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2411-2427.doi: 10.19799/j.cnki.2095-4239.2021.0550
季洪祥(), 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2021-10-20
修回日期:
2021-10-22
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
季洪祥(1997—),男,博士研究生,从事锂离子电池正极材料的研究,E-mail:基金资助:
Hongxiang JI(), Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-10-20
Revised:
2021-10-22
Online:
2021-11-05
Published:
2021-11-03
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery”为关键词检索了Web of Science从2021年8月1日至2021年9月30日上线的锂电池研究论文,共有4209篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元、高电压钴酸锂和富锂锰基的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。金属锂负极的研究侧重于表面修饰,改变锂沉积方向。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。电解液和添加剂的研究主要侧重于不同电解质和溶剂对各类电池材料体系适配,以及对新的功能性添加剂的探索。固态电池方向更多地集中于界面问题的研究。锂硫电池的研究重点是提高硫正极的活性,改善“穿梭”效应。测试表征方面偏重于对材料体相结构和电极/电解质界面等进行观测和分析,固态电池的界面问题研究是热点。理论计算对材料的表面氧活性、界面结构及锂离子的输运机制进行了探讨,而界面反应涉及到了SEI形成的分析。此外,集流体的改性以及电极预锂化研究工作也有多篇。
中图分类号:
季洪祥, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.8.1—2021.9.30)[J]. 储能科学与技术, 2021, 10(6): 2411-2427.
Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021)[J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427.
1 | LEVARTOVSKY Y, CHAKRABORTY A, KUNNIKURUVAN S, et al. Enhancement of structural, electrochemical, and thermal properties of high-energy density Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by niobium doping[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34145-34156. |
2 | ARIBIA A, SASTRE J, CHEN X, et al. In situ lithiated ald niobium oxide for improved long term cycling of layered oxide cathodes: A thin-film model study[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.26434/chemrxiv.13568366. |
3 | RYU H H, NAMKOONG B, KIM J H, et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes[J]. ACS Energy Letters, 2021, 6(8): 2726-2734. |
4 | FAN X M, OU X, ZHAO W G, et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-25611-6. |
5 | PARK C W, LEE J H, SEO J K, et al. Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-22403-w. |
6 | LEE J, YANG Y, JEONG M, et al. Superior rate capability and cycling stability in partially cation-disordered co-free Li-rich layered materials enabled by an initial activation process[J]. Chemistry of Materials, 2021, 33(13): 5115-5126. |
7 | CHEN Q, PEI Y, CHEN H, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17126-3. |
8 | ZHANG J, WANG Q, LI S, et al. Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-20198-w. |
9 | WANG Y Y, WANG Y Y, LIU S, et al. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries[J]. Energy & Environmental Materials, 2021, doi: 10.1002/eem2.12242. |
10 | DIAZ-LOPEZ M, CHATER P A, JOLY Y, et al. Correction: Reversible densification in nano-Li2MnO3 cation disordered rock-salt Li-ion battery cathodes[J]. Journal of Materials Chemistry A, 2020, 8(25): doi: 10.1039/d0ta03372c. |
11 | CAO S, WU C, XIE X, et al. Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17639-17648. |
12 | KIM M, JEONG M, YOON W S, et al. Ultrafast kinetics in a phase separating electrode material by forming an intermediate phase without reducing the particle size[J]. Energy & Environmental Science, 2020, 13(11): 4258-4268. |
13 | STOLZ L, HOMANN G, WINTER M, et al. Area oversizing of lithium metal electrodes in solid-state batteries: Relevance for overvoltage and thus performance?[J]. ChemSusChem, 2021, 14(10): 2163-2169. |
14 | WELDEYOHANNES H H, ABRHA L H, NIKODIMOS Y, et al. Guiding lithium-ion flux to avoid cell's short circuit and extend cycle life for an anode-free lithium metal battery[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour.2021.230204. |
15 | ARIYOSHI K, INO T, YAMADA Y. Effect of electronic conductivity on the polarization behavior of Li[Li1/3Ti5/3]O4 electrodes[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945-7111/ac163f. |
16 | ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943. |
17 | HAN X, WANG S Y, XU Y B, et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries[J]. Energy & Environmental Science, 2021, 14(9): 5044-5056. |
18 | CHENG D J, ZHOU X Q, HU H Y, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon, 2021, 182: 758-769. |
19 | NAGATA H, AKIMOTO J. Excellent deformable oxide glass electrolytes and oxide-type all-solid-state Li2S-Si batteries employing these electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35785-35794. |
20 | XU R, XIAO B, XUAN C, et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34274-34281. |
21 | ZHENG J, SUN C, WANG Z, et al. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2021, 60(34): 18448-18453. |
22 | LUO D, ZHENG L, ZHANG Z, et al. Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-020-20339-1. |
23 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-020-20463-y. |
24 | SUN H, XIE X, HUANG Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angewandte Chemie, 2021, 60(33): 18335-18343. |
25 | ZHAO B, WU J, WANG Z X, et al. Incorporation of lithium halogen in Li7P3S11 glass-ceramic and the interface improvement mechanism[J]. Electrochimica Acta, 2021, 390: doi: 10.1016/j.electacta.2021.138849. |
26 | TAKAHASHI M, WATANABE T, YAMAMOTO K, et al. Investigation of the suppression of dendritic lithium growth with a lithium-iodide-containing solid electrolyte[J]. Chemistry of Materials, 2021, 33(13): 4907-4914. |
27 | WANG Q, YAO Z, ZHAO C, et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17976-x. |
28 | GUO D L, YANG M K, LI Y C, et al. Hydrogel-derived VPO4/porous carbon framework for enhanced lithium and sodium storage[J]. Nanoscale, 2020, 12(6): 3812-3819. |
29 | CHEN J, ZHAO C, XUE D, et al. Lithium deposition-induced fracture of carbon nanotubes and its implication to solid-state batteries[J]. Nano letters, 2021, 21(16): 6859-6866. |
30 | CHEN Z, KIM G T, KIM J K, et al. Highly stable quasi-solid-state lithium metal batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer[J]. Advanced Energy Materials, 2021, 11(30): doi: 10.1002/aenm.202101339. |
31 | CHEN Y, HUO F, CHEN S M, et al. In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries[J]. Advanced Functional Materials, 2021, 31(36): doi: 10.1002/adfm.202102347. |
32 | NIU C Q, LUO W J, DAI C M, et al. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes[J]. Angewandte Chemie International Edition, 2021, doi: 10.1002/anie.202107444. |
33 | KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Materials Letters, 2021, 3(7): 930-938. |
34 | JIANG Z, PENG H L, LIU Y, et al. A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101521. |
35 | MAUGHAN A E, HA Y, PEKAREK R T, et al. Lowering the activation barriers for lithium-ion conductivity through orientational disorder in the cyanide argyrodite Li6PS5CN[J]. Chemistry of Materials, 2021, 33(13): 5127-5136. |
36 | WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24697-2. |
37 | SEIDL L, GRISSA R, ZHANG L T, et al. Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202100704. |
38 | KIM M J, CHOI I H, JO S C, et al. A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes[J]. Small Methods, 2021: doi: 10.1002/smtd.202100793. |
39 | MARCHINI F, PORCHERON B, ROUSSE G, et al. The hidden side of nanoporous β-Li3PS4 solid electrolyte[J]. Advanced Energy Materials, 2021, 11(34): doi: 10.1002/aenm.202101111. |
40 | MENKIN S, O'KEEFE C A, GUNNARSDÓTTIR A B, et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries[J]. The Journal of Physical Chemistry C, 2021, 125(30): 16719-16732. |
41 | CAO Z, ZHENG X Y, QU Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase[J]. Advanced Materials, 2021, 33(38): doi: 10.1002/adma.202103178. |
42 | GU Y X, FANG S H, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372. |
43 | WU F L, FANG S, KUENZEL M, et al. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries[J]. Joule, 2021, 5(8): 2177-2194. |
44 | WANG Z X, SUN Z H, SHI Y, et al. Lithium metal batteries: Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries[J]. Advanced Energy Materials, 2021, 11(28): doi: 10.1002/aenm. 202170112. |
45 | ROY B, CHEREPANOV P, NGUYEN C, et al. Lithium borate ester salts for electrolyte application in next-generation high voltage lithium batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101422. |
46 | JIN C B, ZHANG X Q, SHENG O W, et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(42): 22990-22995. |
47 | LI X, LIU J D, HE J, et al. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases[J]. Advanced Functional Materials, 2021, 31(37): doi: 10.1002/adfm.202104395. |
48 | MENG J, ZHANG Y, ZHOU X, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17493-x. |
49 | WANG C H, LIANG J W, JIANG M, et al. Interface-assisted in situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries[J]. Nano Energy, 2020, 76: doi: 10.1016/j.nanoen.2020.105015. |
50 | SPENCER JOLLY D, NING Z Y, HARTLEY G O, et al. Temperature dependence of lithium anode voiding in argyrodite solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22708-22716. |
51 | HÄNSEL C, SINGH B, KIWIC D, et al. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-in/Sn anodes in sulfide electrolyte-based solid-state batteries[J]. Chemistry of Materials, 2021, 33(15): 6029-6040. |
52 | LEE J, LEE T, CHAR K, et al. Issues and advances in scaling up sulfide-based all-solid-state batteries[J]. Accounts of Chemical Research, 2021, 54(17): 3390-3402. |
53 | YUAN C H, LU W Q, XU J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101807. |
54 | AMORES M, EL-SHINAWI H, MCCLELLAND I, et al. Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-19815-5. |
55 | WANG M J, CARMONA E, GUPTA A, et al. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19004-4. |
56 | ZHENG C, ZHANG J, XIA Y, et al. Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery[J]. Small, 2021, doi: 10.1002/smll.202101326. |
57 | SU Y B, YE L H, FITZHUGH W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. |
58 | SUYAMA M, YUBUCHI S, DEGUCHI M, et al. Importance of Li-metal/sulfide electrolyte interphase ionic conductivity in suppressing short-circuiting of all-solid-state Li-metal batteries[J]. Journal of the Electrochemical Society, 2021, 168(6): doi: 10.1149/1945-7111/ac0995. |
59 | RAJENDRAN S, PILLI A, OMOLERE O, et al. An all-solid-state battery with a tailored electrode-electrolyte interface using surface chemistry and interlayer-based approaches[J]. Chemistry of Materials, 2021, 33(9): 3401-3412. |
60 | NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. |
61 | HAN Y, JUNG S H, KWAK H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries?[J]. Advanced Energy Materials, 2021, 11(21): doi: 10.1002/aenm.202100126. |
62 | WANG L L, SUN X W, MA J, et al. Bidirectionally compatible buffering layer enables highly stable and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100881. |
63 | YANG Y N, JIANG F L, LI Y Q, et al. A surface coordination interphase stabilizes a solid-state battery[J]. Angewandte Chemie International Edition, 2021, doi: 10.1002/anie.202111739. |
64 | DAVIS A L, GOEL V, LIAO D W, et al. Rate limitations in composite solid-state battery electrodes: Revealing heterogeneity with operando microscopy[J]. ACS Energy Letters, 2021, 6(8): 2993-3003. |
65 | DOERRER C, CAPONE I, NARAYANAN S, et al. High energy density single-crystal NMC/Li6PS5Cl cathodes for all-solid-state lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37809-37815. |
66 | CHEN F, ZHANG Y L, HU Q, et al. S/MWCNt/LLZO composite electrode with e-/S/Li+ conductive network for all-solid-state lithium-sulfur batteries[J]. Journal of Solid State Chemistry, 2021, 301: doi: 10.1016/j.jssc.2021.122341. |
67 | LOU S F, LIU Q W, ZHANG F, et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-19528-9. |
68 | CHEN P Y, YAN C, CHEN P Y, et al. Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(33): 18031-18036. |
69 | LIU T, LI H J, YUE J M, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(32): 17547-17555. |
70 | ALESHIN A, BRAVO S, REDQUEST K, et al. Rapid oxidation and reduction of lithium for improved cycling performance and increased homogeneity[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2654-2661. |
71 | BARAN M J, CARRINGTON M E, SAHU S, et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages[J]. Nature, 2021, 592(7853): 225-231. |
72 | YANG J L, CAI D Q, HAO X G, et al. Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries[J]. ACS Nano, 2021, 15(7): 11491-11500. |
73 | YE L, LIAO M, CHENG X R, et al. Lithium-metal anodes working at 60 mA/cm2 and 60 mA·h/cm2 through nanoscale lithium-ion adsorbing[J]. Angewandte Chemie International Edition, 2021, 60(32): 17419-17425. |
74 | YAMAMOTO M, GOTO S, TANG R, et al. Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li-S batteries using flexible carbon materials with large pore volumes[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38613-38622. |
75 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24976-y. |
76 | WANG N, ZHANG X, JU Z, et al. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24873-4. |
77 | QIN B, CAI Y F, SI X Q, et al. All-in-one sulfur host: Smart controls of architecture and composition for accelerated liquid-solid redox conversion in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39424-39434. |
78 | FAN Q N, JIANG J C, ZHANG S L, et al. Accelerated polysulfide redox in binder-free Li2 S cathodes promises high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100957. |
79 | JOBST N M, GABRIELLI G, AXMANN P, et al. Compensation of the irreversible loss of Si-anodes via prelithiated NMC/LMO blend cathode[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945-7111/ac15b7. |
80 | CHEN H, YANG Y F, BOYLE D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, 6(8): 790-798. |
81 | WU J Y, JU Z Y, ZHANG X, et al. Ultrahigh-capacity and scalable architected battery electrodes via tortuosity modulation[J]. ACS Nano, 2021, doi: 10.1021/acsnano.1c06491. |
82 | ARAKI C, TSUBOUCHI S, NOIE A, et al. Thickness dependence of resistance components of a LiNixCoyMn1-x-yO2-Based positive electrode for lithium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.1149/1945-7111/abf0d9. |
83 | LI J Z, LI S F, ZHANG Y X, et al. Multiphase, multiscale chemomechanics at extreme low temperatures: Battery electrodes for operation in a wide temperature range[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202170143. |
84 | LI J Y, HUANG J X, LI H Y, et al. Insight into the redox reaction heterogeneity within secondary particles of nickel-rich layered cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27074-27084. |
85 | WANG L, XIE R, CHEN B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19726-5. |
86 | FAWDON J, IHLI J, MANTIA F, et al. Characterising lithium-ion electrolytes via operando Raman microspectroscopy[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24297-0. |
87 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
88 | HÖLTSCHI L, BORCA C N, HUTHWELKER T, et al. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2021, 389: doi: 10.1016/j.electacta.2021.138735. |
89 | CONFORTO G, RUESS R, SCHRÖDER D, et al. Editors' choice-quantification of the impact of chemo-mechanical degradation on the performance and cycling stability of NCM-based cathodes in solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/ac13d2. |
90 | CHAE B G, PARK S Y, SONG J H, et al. Evolution and expansion of Li concentration gradient during charge-discharge cycling[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24120-w. |
91 | PARK J, BAE K T, KIM D, et al. Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105456. |
92 | HOPE M A, RINKEL B L D, GUNNARSDÓTTIR A B, et al. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-16114-x. |
93 | SPINGLER F B, KÜCHER S, PHILLIPS R, et al. Electrochemically stable in situ dilatometry of NMC, NCA and graphite electrodes for lithium-ion cells compared to XRD measurements[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.1149/1945-7111/abf262. |
94 | BIRKHOLZ O, KAMLAH M. Electrochemical modeling of hierarchically structured lithium-ion battery electrodes[J]. Energy Technology, 2021, 9(6): doi: 10.1002/ente.202000910. |
95 | KIM S Y, PARK C S, HOSSEINI S, et al. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer[J]. Advanced Energy Materials, 2021, 11(30): doi: 10.1002/aenm.202100552. |
96 | BESLI M M, USUBELLI C, SUBBARAMAN A, et al. Location-dependent cobalt deposition in smartphone cells upon long-term fast-charging visualized by synchrotron X-ray fluorescence[J]. Chemistry of Materials, 2021, 33(16): 6318-6328. |
97 | LIU T F, ZHENG J L, HU H L, et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 55: 272-278. |
98 | LI S Q, ZHOU W Y, XIA X G, et al. Binder-free electrodes with high energy density and excellent flexibility enabled by hierarchical configuration for wearable lithium ion batteries[J]. Advanced Materials Technologies, 2021, 6(8): doi: 10.1002/admt.202001262. |
99 | ANDRITSOS E I, LEKAKOU C, CAI Q. Single-atom catalysts as promising cathode materials for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2021, 125(33): 18108-18118. |
100 | KWON H, LEE J H, ROH Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-25848-1. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||