1 |
LIM H D, PARK J H, SHIN H J, et al. A review of challenges and issues concerning interfaces for all-solid-state batteries[J]. Energy Storage Materials, 2020, 25: 224-250.
|
2 |
HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286.
|
3 |
GRUGEON S, LARUELLE S, HERRERA-URBINA R, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium[J]. Journal of the Electrochemical Society, 2001, 148(4): A285.
|
4 |
吴超, 崔永丽, 庄全超, 等. 基于转化反应机制的锂离子电池电极材料研究进展[J]. 化学通报, 2011, 74(11): 1014-1025.
|
|
WU C, CUI Y L, ZHUANG Q C, et al. Progress of electrode materials entailing conversion reaction for Li-ion batteries[J]. Chemistry, 2011, 74(11): 1014-1025.
|
5 |
ZHENG M, TANG H, LI L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(3): 1700592.
|
6 |
JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials (Deerfield Beach, Fla), 2012, 24(38): 5166-5180.
|
7 |
王苑, 韩凯, 易小艺. 基于化学储能应用的后过渡金属氧化物合成、改性[J]. 功能材料, 2019, 50(5): 5072-5082.
|
|
WANG Y, HAN K, YI X Y. Syntheses and modifications of late transition-metal oxides based on chemical energy storage applications[J]. Journal of Functional Materials, 2019, 50(5): 5072-5082.
|
8 |
ZHAO Yi, WANG Luyuan, SOUGRATI Paul, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J]. Advanced Energy Materials, 2017, 7(9): 1601424.
|
9 |
MEI J, ZHANG Y W, LIAO T, et al. Strategies for improving the lithium-storage performance of 2D nanomaterials[J]. National Science Review, 2018, 5(3): 389-416.
|
10 |
向银域, 陈婵, 肖天赐, 等. 过渡金属氧化物在锂离子电池中的应用[J]. 电源技术, 2017, 41(12): 1782-1784.
|
|
XIANG Y Y, CHEN C, XIAO T C, et al. Application of transition metal oxide in lithium ion battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1782-1784.
|
11 |
HUANG X K, CUI S M, CHANG J B, et al. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life[J]. Angewandte Chemie International Edition, 2015, 54(5): 1490-1493.
|
12 |
GUAN B Y, YU L, LOU X W D. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2017, 4(10): 1700247.
|
13 |
金婷, 王晓君, 焦丽芳. 静电纺丝技术在二次电池和电催化领域的应用进展[J]. 中国科学: 化学, 2019, 49(5): 692-703.
|
|
JIN T, WANG X J, JIAO L F. Recent progress in electrospinning method for secondary ion batteries and electrocatalysis[J]. Scientia Sinica (Chimica), 2019, 49(5): 692-703.
|
14 |
CHENG J, JUN Y, QIN J H, et al. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications[J]. Biomaterials, 2017, 114: 121-143.
|
15 |
YANG T, CHEN Z, ZHANG H, et al. Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks[J]. Electrochimica Acta, 2016, 217: 55-61.
|
16 |
奚红雪, 刘新刚, 张楚虹. 静电纺丝法制备自支撑二氧化锡/碳复合柔性电极及其在锂离子电池中的应用[J]. 高分子材料科学与工程, 2019, 35(6): 87-93.
|
|
XI H X, LIU X G, ZHANG C H. Electro-spun free-standing flexible SnO2/carbon composite electrode for lithium-ion battery application[J]. Polymer Materials Science & Engineering, 2019, 35(6): 87-93.
|
17 |
LIU Y, YAN X D, YU Y H, et al. Eco-friendly fabricated porous carbon nanofibers decorated with nanosized SnOx as high-performance lithium-ion battery anodes[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 2951-2959.
|
18 |
CHEN Y J, YUAN X T, YANG C, et al. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 777: 127-134.
|
19 |
SHILPA, BASAVARAJA B M, MAJUMDER S B, et al. Electrospun hollow glassy carbon-reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: A free standing anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5344-5351.
|
20 |
QU E L, CHEN T, XIAO Q Z, et al. Coaxial MnO2 Nanoshell/CNFs composite film anode for high-performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(3): A487-A492.
|
21 |
BROWN E, PARK S H, ELANGOVAN A, et al. Facilitating high-capacity V2O5 cathodes with stable two and three Li+ insertion using a hybrid membrane structure consisting of amorphous V2O5 shells coaxially deposited on electrospun carbon nanofibers[J]. Electrochimica Acta, 2018, 269: 144-154.
|
22 |
WANG X Y, FAN L, GONG D C, et al. Battery anodes: Core-shell Ge@Graphene@TiO2 Nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery[J]. Advanced Functional Materials, 2016, 26(7): 1143.
|
23 |
WANG X L, LI G, LI J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2533-2538.
|
24 |
ZHANG T, ZHANG L, ZHAO L, et al. Free-standing, foldable V2O3 /multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(47): e2005302.
|
25 |
GAO S W, WANG N, LI S, et al. A multi-wall Sn/SnO2 @Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(6): 2465-2472.
|
26 |
WU Q H, XU R H, ZHAO R F, et al. Tube-in-tube composite nanofibers with high electrochemistry performance in energy storage applications[J]. Energy Storage Materials, 2019, 19: 69-79.
|
27 |
SHIN Y M, HOHMAN M M, BRENNER M P, et al. Experimental characterization of electrospinning: The electrically forced jet and instabilities[J]. Polymer, 2001, 42(25): 09955-09967.
|
28 |
WANG W S, DAHL M, YIN Y D. Hollow nanocrystals through the nanoscale kirkendall effect[J]. Chemistry of Materials, 2013, 25(8): 1179-1189.
|
29 |
WANG X F, TANG Y H, SHI P H, et al. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 1642-1649.
|
30 |
ZHANG C L, LU B R, CAO F H, et al. Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(27): 12962-12968.
|
31 |
麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5): 871-888.
|
|
MA Y T, HUANG J, LIU X, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 871-888.
|
32 |
YIN L H, GAO Y J, JEON I, et al. Rice-panicle-like γ-Fe2O3@C nanofibers as high-rate anodes for superior lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 356: 60-68.
|
33 |
GOU W W, KONG X Z, WANG Y P, et al. Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries[J]. Chemical Engineering Journal, 2019, 374: 545-553.
|
34 |
CHO J S, HONG Y J, KANG Y C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries[J]. ACS Nano, 2015, 9(4): 4026-4035.
|