储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1261-1272.doi: 10.19799/j.cnki.2095-4239.2021.0082
刘洋洋(), 王旭阳, 徐谢宇, 王永静, 熊仕昭(), 宋忠孝()
收稿日期:
2021-03-05
修回日期:
2021-03-16
出版日期:
2021-07-05
发布日期:
2021-06-25
通讯作者:
熊仕昭,宋忠孝
E-mail:liuyy0510@hotmail.com;shizhao.xiong@hotmail.com;zhongxiaosong@mail.xjtu.edu.cn
作者简介:
刘洋洋(1992—),男,博士,助理研究员,主要研究锂金属负极,E-mail:基金资助:
Yangyang LIU(), Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG(), Zhongxiao SONG()
Received:
2021-03-05
Revised:
2021-03-16
Online:
2021-07-05
Published:
2021-06-25
Contact:
Shizhao XIONG,Zhongxiao SONG
E-mail:liuyy0510@hotmail.com;shizhao.xiong@hotmail.com;zhongxiaosong@mail.xjtu.edu.cn
摘要:
金属锂具有超高理论比容量密度(3680 mA·h/g)和低还原电位(-3.04 V,相对标准氢电极),被认为是高能量密度电池负极材料的“圣杯”。然而,由锂枝晶生长和对电解质高反应性所造成的库仑效率低、循环寿命短、内短路等一系列问题,严重制约着金属锂负极的实用化进展。在实际的电化学体系中,集流体作为金属锂沉积/脱出的基底,其表面性质对锂负极的循环稳定性起着至关重要的作用。本文从负极集流体表面成分以及微结构设计两方面系统总结了多种稳定金属锂负极的界面修饰策略,包括构建亲锂表面、纳米级电子/离子混合导电网络修饰、表面微结构设计等。对集流体界面和结构进行针对性修饰,可以有效调控金属锂的电沉积,推进金属锂负极在高能量密度电池体系中的实用化进程。
中图分类号:
刘洋洋, 王旭阳, 徐谢宇, 王永静, 熊仕昭, 宋忠孝. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272.
Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272.
1 | 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72. |
2 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
3 | LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
4 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. |
5 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
6 | 李茜, 郁亚娟, 张之琦, 等. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86.LI X, YU Y J, ZHANG Z Q, et al. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J] Energy Storage Science and Technology, 2021, 10(1): 77-86. |
7 | ZHANG S S. Problem, status, and possible solutions for lithium metal anode of rechargeable batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 910-920. |
8 | WOOD K N, NOKED M, DASGUPTA N P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672. |
9 | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011.GUAN J, LI N W, YU L. Artificial interphase layers for lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 2009011. |
10 | 刘冬冬, 陈超, 熊训辉. 锂金属负极人造保护膜的研究进展[J]. 物理化学学报, 2021, 37(2): 202008078.LIU D D, CHEN C, XIONG X H. Research progress on artificial protective films for lithium metal anodes[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 202008078. |
11 | 刘凡凡, 张志文, 叶淑芬, 等. 锂金属负极的挑战与改善策略研究进展[J]. 物理化学学报, 2021, 37(1): 2006021.LIU F F, ZHANG Z W, YE S F, et al. Challenges and improvement strategies progress of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 2006021. |
12 | XIAO J, LI Q Y, BI Y J, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy, 2020, 5(8): 561-568. |
13 | ZHANG C F, LIU Y Y, JIAO X Y, et al. In situ volume change studies of lithium metal electrode under different pressure[J]. Journal of The Electrochemical Society, 2019, 166(15): A3675-A3678. |
14 | XU X Y, LIU Y Y, HWANG J Y, et al. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): 2002390. |
15 | LIU Y Y, XU X Y, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science, 2021, 8(5): 2003301. |
16 | FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advance, 2018, 4(12): eaau9245. |
17 | OZHABES Y, GUNCELER D, ARIAS T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. arXiv: 1504. 05799v1, 2015, [cond-mat. mtrl-sci]. |
18 | LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274. |
19 | SANO H, SAKAEBE H, SENOH H, et al. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes[J]. Journal of The Electrochemical Society, 2014, 161(9): A1236-A1240. |
20 | SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008, 178(2): 769-773. |
21 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. |
22 | 高蕾, 孟玉凤, 颜琪斌, 等. 铜箔对动力锂离子电池性能的影响[J]. 储能科学与技术, 2021, 9(S1): 1-6.GAO L, MENG Y F, YAN Q B, et al. The influence of copper foil appearance quality on Li-ion power battery performance[J]. Energy Storage Science and Technology, 2021, 9(S1): 1-6. |
23 | 邱晓光, 刘威, 刘九鼎, 等. 金属锂负极的成核机制与载体修饰[J]. 物理化学学报, 2021, 37(1): 79-89.QIU X G, LIU W, LIU J D, et al. Nucleation mechanism and substrate modification of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 79-89. |
24 | RUPP R, CAERTS B, VANTOMME A, et al. Lithium diffusion in copper[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5206-5210. |
25 | LIU Y Y, XIONG S Z, WANG J L, et al. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites[J]. Energy Storage Materials, 2019, 19: 24-30. |
26 | WANG S H, YUE J P, DONG W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes[J]. Nature Communications, 2019, 10(1): 4930. |
27 | YAN K, LU Z D, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1(3): 16010. |
28 | STAN M C, BECKING J, KOLESNIKOV A, et al. Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution[J]. Materials Today, 2020, 39: 137-145. |
29 | HOU Z, YU Y K, WANG W H, et al. Lithiophilic Ag nanoparticle layer on Cu current collector towards stable Li metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8148-8154. |
30 | ZHANG S S, FAN X L, WANG C S. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery[J]. Electrochimica Acta, 2017, 258: 1201-1207. |
31 | GUO F H, WU C, CHEN H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode[J]. Energy Storage Materials, 2020, 24: 635-643. |
32 | LIU S, ZHANG X Y, LI R S, et al. Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating[J]. Energy Storage Materials, 2018, 14: 143-148. |
33 | SONG R S, GE Y Q, WANG B, et al. A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(30): 18126-18134. |
34 | ZHANG N, YU S-H, ABRUÑA H D. Regulating lithium nucleation and growth by zinc modified current collectors[J]. Nano Research, 2019, 13(1): 45-51. |
35 | 王志达, 冯元宬, 卢松涛, 等. 利用原位氟化保护层改善三维锡锂合金/碳纸负极贫电解液下性能[J]. 物理化学学报, 2021, 37(2): 7-13.WANG Z D, FENG Y K, LU S T, et al. Improvement in performance of three-dimensional SnLi/carbon paper anode in lean electrolyte with in situ fluorinated protection layer[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 7-13. |
36 | OYAKHIRE S T, HUANG W, WANG H S, et al. Revealing and elucidating ALD-derived control of lithium plating microstructure[J]. Advanced Energy Materials, 2020, 10(44): 2002736. |
37 | CHEN W Y, SALVATIERRA R V, REN M Q, et al. Laser-induced silicon oxide for anode-free lithium metal batteries[J]. Advanced Materials, 2020, 32(33): 2002850. |
38 | ZHANG Q, LUAN J Y, TANG Y G, et al. A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2018, 6(38): 18444-18448. |
39 | TU Z Y, ZACHMAN M J, CHOUDHURY S, et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases[J]. Chemistry of Materials, 2018, 30(16): 5655-5662. |
40 | WONDIMKUN Z T, BEYENE T T, WERET M A, et al. Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries[J]. Journal of Power Sources, 2020, 450: 227589. |
41 | LI Q, PAN H Y, LI W J, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Letters, 2018, 3(9): 2259-2266. |
42 | LEE D, SUN S, KWON J, et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes[J]. Advanced Materials, 2020, 32(7): 1905573. |
43 | HE D Q, LIAO Y Q, CHENG Z X, et al. Facile one-step vulcanization of copper foil towards stable Li metal anode[J]. Science China Materials, 2020, 63(9): 1663-1671. |
44 | LIN K, LI T, CHIANG S W, et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes[J]. Small, 2020, 16(37): 2001784. |
45 | CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367. |
46 | YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058. |
47 | YE H, ZHENG Z J, YAO H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099. |
48 | TANG Y P, SHEN K, LÜ Z Y, et al. Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal[J]. Journal of Power Sources, 2018, 403: 82-89. |
49 | UMH H N, PARK J, YEO J, et al. Lithium metal anode on a copper dendritic superstructure[J]. Electrochemistry Communications, 2019, 99: 27-31. |
50 | CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348. |
51 | ZHANG D, DAI A, WU M, et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 5(1): 180-186. |
52 | YUN Q B, HE Y B, LÜ W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939. |
53 | ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19): 1800266. |
54 | AN Y L, FEI H F, ZENG G F, et al. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries[J]. Nano Energy, 2018, 47: 503-511. |
55 | LI Q, ZHU S P, LU Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606422. |
56 | KIM H, GONG Y J, YOO J, et al. Highly stable lithium metal battery with an applied three-dimensional mesh structure interlayer[J]. Journal of Materials Chemistry A, 2018, 6(32): 15540-15545. |
57 | SHI P, LI T, ZHANG R. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): 1807131. |
58 | CHANG J, SHANG J, SUN Y M, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9(1): 4480. |
59 | CHEN X, LÜ Y Y, SHANG M W, et al. Ironing controllable lithium into lithiotropic carbon fiber fabric: A novel Li-metal anode with improved cyclability and dendrite suppression[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21584-21592. |
60 | MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929. |
61 | ZHENG J X, TANG T, ZHAO Q, et al. Physical orphaning versus chemical instability: Is dendritic electrodeposition of Li fatal?[J]. ACS Energy Letters, 2019, 4(6): 1349-1355. |
62 | ZUO T T, WU X W, YANG C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity li anodes[J]. Advanced Materials, 2017, 29(29): 1700389. |
63 | TAO L, HU A Y, YANG Z R, et al. A surface chemistry approach to tailoring the hydrophilicity and lithiophilicity of carbon films for hosting high-performance lithium metal anodes[J]. Advanced Functional Materials, 2020, 30(31): 2000585. |
64 | LIU L, YIN Y X, LI J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule, 2017, 1(3): 563-575. |
65 | HUANG G, HAN J H, ZHANG F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials, 2019, 31(2): 1805334. |
66 | MATSUDA S, KUBO Y, UOSAKI K, et al. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode[J]. Carbon, 2017, 119: 119-123. |
67 | REN F H, LI Z D, HUAI L Y, et al. High-loading lateral Li deposition realized by a scalable fluorocarbon bonded laminates[J]. Carbon, 2021, 171: 894-906. |
68 | GUO F, WANG Y L, KANG T, et al. A Li-dual carbon composite as stable anode material for Li batteries[J]. Energy Storage Materials, 2018, 15: 116-123. |
69 | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. |
70 | CHEN K-H, SANCHEZ A J, KAZYAK E, et al. Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(4): 1802534. |
71 | TANTRATIAN K, CAO D X, ABDELAZIZ A, et al. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays[J]. Advanced Energy Materials, 2019, 10(5): 1902819. |
72 | 王骞, 吴恺, 王航超, 等. 亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极[J]. 物理化学学报, 2021, 37(1): 150-158.WANG Q, WU K, WANG H C, et al. Lithiophilic 3D SnS2@carbon fiber cloth for stable Li metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 150-158. |
73 | CHEN L, FAN X L, JI X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
74 | LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
75 | LIU Y Y, XU X Y, JIAO X X, et al. LixGe containing ion-conductive hybrid skin for high rate lithium metal anode[J]. Chemical Engineering Journal, 2019, 371: 294-300. |
76 | LIU Y Y, XIONG S Z, DENG J K, et al. Stable Li metal anode by crystallographically oriented plating through in-situ surface doping[J]. Science China Materials, 2020, 63(6): 1036-1045. |
77 | HE M F, GUO R, HOBOLD G M, et al. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 73-79. |
78 | WANG R, YU J, TANG J T, et al. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode[J]. Energy Storage Materials, 2020, 32: 178-184. |
79 | HU F, LI Z, WANG S F, et al. Mirror-like electrodeposition of lithium metal under a low-resistance artificial solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39674-39684. |
[1] | 乔东格, 刘训良, 温治, 豆瑞峰, 周文宁. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. |
[2] | 高金辉, 陈英龙, 孟繁慧, 丁美超, 王莉, 许刚, 何向明. 锂离子电池原位光学显微观测[J]. 储能科学与技术, 2022, 11(1): 53-59. |
[3] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[4] | 方聪聪, 刘雯, 王勇, 郭瑞, 裴海娟, 于升学, 解晶莹. 金属锂电极的原位物理表征[J]. 储能科学与技术, 2018, 7(S1): 54-62. |
[5] | 袁艳, 郑东东, 方钊, 刘漫博, 李涛. 锂硫电池硫正极技术研究进展[J]. 储能科学与技术, 2018, 7(4): 618-630. |
[6] | 赵梦,许睿,黄佳琦,张强. 锂硫电池中柔性正极的研究进展[J]. 储能科学与技术, 2017, 6(3): 360-379. |
[7] | 沈馨,张睿,程新兵,管超,黄佳琦,张强. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
[8] | 许 睿1,赵 梦1,黄佳琦1,2. 复合隔膜在锂硫电池中的应用评述[J]. 储能科学与技术, 2017, 6(3): 433-450. |
[9] | 石 凯,安德成,贺艳兵,李宝华,康飞宇. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
[10] | 陈雨晴1, 2,杨晓飞1, 2,于 滢1, 2,李先锋1, 3,张洪章1, 3,张华民1, 3. 锂硫电池关键材料与技术的研究进展[J]. 储能科学与技术, 2017, 6(2): 169-189. |
[11] | 郭 玉 国. “高能量密度纳米固态金属锂电池研究”项目介绍[J]. 储能科学与技术, 2016, 5(6): 919-921. |
[12] | 夏 雨,王双双,王义飞. 碳纳米管在锂离子电池中的应用[J]. 储能科学与技术, 2016, 5(4): 422-429. |
[13] | 王绥军, 傅凯, 官亦标, 刘曙光, 徐彬, 范茂松. 软包磷酸铁锂电池低温热安全性能研究[J]. 储能科学与技术, 2016, 5(2): 204-209. |
[14] | 朱建宇, 冯捷敏, 郭战胜. 锂离子电池电极中锂枝晶的实时原位观测[J]. 储能科学与技术, 2015, 4(1): 66-71. |
[15] | 朱建宇, 冯捷敏, 王宇晖, 郭战胜. 锂离子电池用铜箔集流体的力学性能分析[J]. 储能科学与技术, 2014, 3(4): 360-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||