1 |
李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21.
|
|
LI W, CHEN W, WANG D D. Research and development of thermochemical energy storage based on hydrated salt[J]. Refrigeration and Air Conditioning, 2017, 17(8): 14-21.
|
2 |
YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39: 489-514.
|
3 |
TRAUSEL F, JONG A J D, CUYPERS R. A review on the properties of salt hydrates for thermochemical storage[J]. Energy Procedia, 2014, 48: 447-452.
|
4 |
BOER R D, HAIJE W, VELDHUIS J. Determination of structural, thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump[J]. Thermochimica Acta, 2003, 395: 3-19.
|
5 |
DONKERS P A J, SOGUTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68.
|
6 |
RAMMELBERG H U, OSTERLAND T, PRIEHS B, et al. Thermochemical heat storage materials-Performance of mixed salt hydrates[J]. Solar Energy, 2016, 136: 571-589.
|
7 |
ZONDAG H A, KIKKERT B W J, SMEDING S F, et al. Thermochemical seasonal solar heat storage with MgCl2·6H2O: First upscaling of the reactor[C]//Proceedings of International Conference for Sustainable Energy Storage, 2011.
|
8 |
王会春, 凌子夜, 方晓明, 等. 六水氯化镁相变储热材料的研究进展[J].储能科学与技术, 2017, 6(2): 204-212.WANG H C, LING Z Y, FANG X M, et al. Recent progress in the use of magnesium chloride hyxahydrate used as a phase change material[J]. Energy Storage Science and Technology, 2017, 6(2): 204-212.
|
9 |
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16.
|
10 |
展佳, 秦善, 高静. 无机水合盐中水的状态与相变潜热的关系[J]. 北京大学学报(自然科学报), 54(1): 80-86.ZHAN J, QIN S, GAO J. Storage of water in inorganic salt hydrates and the implications to latent heat in phase changes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 80-86.
|
11 |
FOPAH-LELE A, TAMBA J G. A review on the use of SrBr2·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials & Solar Cells, 2017, 164: 175-187.
|
12 |
AL-ABBASI O, ABDELKEDI A, GHOMMEM M. Modeling and assessment of a thermochemical energy storage using salt hydrates[J]. International Journal of Energy Research, 2017, 41: 2149-2161.
|
13 |
LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48:394-404.
|
14 |
MEHRABADI A, FARID M. New salt hydrate composite for low-grade thermal energy storage[J]. Energy, 2018, 164:194-203.
|
15 |
LIN J, ZHAO Q, HUANG H, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review[J]. Solar Energy, 2021, 214:149-178.
|
16 |
郝茂森, 刘洪芝, 王婉桐, 等. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 9(3): 791-796.HAO M S, LIU H Z, WANG W T, et al. Research progress of thermochemical heat storage materials of hydrated salts[J]. Energy Storage Science and Technology, 2020, 9(3): 791-796.
|
17 |
POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502: 73-76.
|
18 |
ARISTOV Y I, RESTUCCIA G, TOKAREV M M, et al. Selective water sorbents for multiple applications, 10. Energy storage ability[J]. Reaction Kinetics and Catalysis Letters, 2000, 69: 345-353.
|
19 |
LEVITSKIJ E A, ARISTOV Y I, TOKAREV M M, et al. "Chemical heat accumulators": A new approach to accumulating low potential heat[J]. Solar Energy Materials and Solar Cells, 1996, 44: 219-235.
|
20 |
GARETH T W, DIDIER G, DUSAN S, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials & Solar Cells, 2014, 128: 289-295.
|
21 |
YU N, WANG R Z, WANG L W, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84.
|
22 |
KORHAMMER K, DRUSKE M M, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472.
|
23 |
EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite[J]. Applied Thermal Engineering, 2020, 176: doi: 10.1016/j.applthermaleng.2020.115396.
|
24 |
苗琪, 张叶龙, 谈玲华, 等. 矿物基化学吸附储热技术的研究进展[J]. 化工进展, 2020, 39(4): 1308-1320.MIAO Q, ZHANG Y L, TAN L H, et al. Research progress of mineral-based chemical adsorption heat storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1308-1320.
|
25 |
翁立奎,张叶龙,姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736.WENG L K, ZHANG Y L, JIANG L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736.
|
26 |
State of the art by the IEA Solar Heating and Cooling Task 32. Thermal energy storage for solar and low energy buildings[R]. IEA SHC, 2006. https://task32.iea-shc.org/publications.
|
27 |
YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84.
|
28 |
COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194.
|
29 |
COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541.
|
30 |
GREKOVA A, GORDEEVA L, ARISTOV Y. Composite "LiCl/vermiculite" as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
|
31 |
GREKOVA A, GORDEEVA L, ARISTOV Y. Composite sorbents "Li/Ca halogenides inside Multi-wall Carbon Nano-tubes" for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2016, 155: 176-183.
|
32 |
WU H, CHUA YS, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532.
|
33 |
SHEARER G C, CHAVAN S, ETHIRAJ J, et al. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66[J]. Chemistry of Materials, 2014, 26(14): 4068-4071.
|
34 |
ZHAO Y, WANG R, YANG Y, et al. Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J]. Energy, 2016, 115: 129-139.
|
35 |
PERMYAKOVA A, WANG S, COURBON E. Design of salt-metal organic framework composites for seasonal heat storage applications[J], Journal of Materials Chemistry A, 2017, 5: 12889-12898.
|
36 |
D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 10. doi: 10.1016/j.est.2019.100881.
|
37 |
SHI W N, ZHU Y Q, SHEN C, et al. Water sorption properties of functionalized MIL-101(Cr)-X (X=—NH2, —SO3H, H, —CH3, —F) based composites as thermochemical heat storage materials[J]. Microporous and Mesoporous Materials, 2019, 285: 129-136.
|
38 |
WADE CR, CORRALES-SANCHEZ T, NARAYAN T C, et al. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties[J], Energy and Environmental Science, 2013, 6: 2172-2177.
|
39 |
ZHUANG J, KU C H, CHOU L, et al. Optimized metal organic framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation[J]. ACS Nano, 2014, 8: 2812-2819.
|
40 |
FUJIE K, YAMADA T, IKEDA R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie International Edition, 2014, 53: 11302-11305.
|
41 |
LUAN Y, YANG M, MA Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4: 7641-7649.
|
42 |
FENG D L, FENG Y H, ZANG Y Y. Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132.
|
43 |
DIMBERU G A, SEONG J C, KI-HYUN K, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124430.
|
44 |
CHEN X, GAO H Y, TANG Z D, et al. Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell Reports Physical Science, 2020, 1(10): 2666-3864.
|
45 |
PERMYAKOVA A. Metal Organic Frameworks based materials for long term solar energy storage application[D]. Paris: Université Paris-Saclay, Université de Mons, 2016.
|
46 |
N'TSOUKPOE K E, RESTUCCIA G, SCHIMIDT T, et al. The size of sorbents in low pressure sorption or thermochemical energy storage processes[J]. Energy, 2014, 77: 983-998.
|
47 |
SUN L M, MEUNIER F. Adsorption-aspects theoriques[J]. Techniques De Lingénieur, 2003: 1-16.
|
48 |
RUCKENSTEIN E, VAIDYANATHAN A S, YOUNGQUIST G R. Sorption by solids with bidisperse pore structures[J]. Chemical Engineering Science, 1971, 26: 1305-1318.
|
49 |
SILVA M T M S, RODRIGUES A E. Adsorption and diffusion in bidisperse pore structures[J]. Industrial & Engineering Chemistry Research, 1999, 38: 4023-4031.
|
50 |
SUN L M, MEUNIER F. Non-isothermal adsorption in a bidisperse adsorbent pellet[J]. Chemical Engineering Science, 1987, 42: 2899-2907.
|
51 |
THOMAS W, CRITTENDEN B. Adsorption technology and design[J]. Elsevier Science & Technology Books, 1998.
|
52 |
SUGIMOTO K, DINNEBIER R E, HANSON J C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n = 1, 2, 4)[J]. Acta Crystallographica Section B, 2007, 63: 235-242.
|
53 |
LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: doi: 10.1016/j.enconman.2019.111843.
|
54 |
LELE A F, KUZNIK F, OPEL O, et al. Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion & Management, 2015, 106: 1327-1344.
|
55 |
MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW·h by a solid/gas reaction[J]. Solar Energy, 2018, 82: 623-636.
|
56 |
MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47: 553-563.
|
57 |
MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance[J]. Applied Energy, 2014, 129: 177-186.
|
58 |
MICHEL B, MAZET N, NEVEU P. Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution[J]. Applied Energy, 2016, 180: 234-244.
|
59 |
LIU H Z, NAGONO K, SUGIYAMA D, et al. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480.
|
60 |
CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108.
|
61 |
LASS-SEYOUM A, BLICKER M, BOROZDENKO D, et al. Transfer of laboratory results on closed sorption thermochemical energy storage to a large-scale technical system[J]. Energy Procedia, 2012, 30: 310-320.
|
62 |
HAWWASH A A, HASSAN H, ELFEKY K. Impact of reactor design on the thermal energy storage of thermochemical Materials[J]. Applied Thermal Engineering, 2020, 168: doi: 10.1016/j.applthermaleng.2019.114776.
|