储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1273-1284.doi: 10.19799/j.cnki.2095-4239.2021.0026

• 储能材料与器件 • 上一篇    下一篇

热化学储热反应器内水合盐物性调控及传热传质优化研究进展

罗伊默1(), 芮金金1, 徐薇1, 彭晋卿1, 折晓会2,3(), 李念平1, 丁玉龙3   

  1. 1.湖南大学土木工程学院,湖南 长沙 410082
    2.石家庄铁道大学机械工程学院,河北 石家庄 050043
    3.英国伯明翰大学化工学院,英国 伯明翰 B15 2TT
  • 收稿日期:2021-01-19 修回日期:2021-04-17 出版日期:2021-07-05 发布日期:2021-06-25
  • 通讯作者: 罗伊默,折晓会 E-mail:yimoluo@hnu.edu.cn;SheXH19@hotmail.com
  • 作者简介:罗伊默(1987—),女,博士,教授,主要研究方向为水合盐热化学储能,E-mail:yimoluo@hnu.edu.cn
  • 基金资助:
    中华人民共和国科学技术部高端外国专家引进计划(G20200018005);中华人民共和国住房和城乡建设部科学技术计划(2020-K-168);湖南省科技创新计划(2020RC5003);河北省百人计划(E2020050008┫项目)

Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor

Yimo LUO1(), Jinjin RUI1, Wei XU1, Jinqing PENG1, Xiaohui SHE2,3(), Nianping LI1, Yulong DING3   

  1. 1.Faculty of Civil Engineering, Hunan University, Changsha 410082, Hunan, China
    2.School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
    3.School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
  • Received:2021-01-19 Revised:2021-04-17 Online:2021-07-05 Published:2021-06-25
  • Contact: Yimo LUO,Xiaohui SHE E-mail:yimoluo@hnu.edu.cn;SheXH19@hotmail.com

摘要:

水合盐热化学储热具有材料储热密度高、热损失小、适合季节性存储等优点,与可再生能源相结合是保障清洁供热、实现供热碳中和的有效措施之一。反应器是水合盐热化学储热的关键部件,直接影响系统的效率和可靠性。然而目前反应器因材料配方和结构设计不合理,存在热功率低、材料循环稳定性差、装置使用寿命短等缺点。本文针对反应器性能优化,从水合盐物性调控和水合盐-湿空气传热传质机理两个方面进行了综述。与现有综述不同,首次对新型金属有机框架材料(MOF)在水合盐热化学储热领域的研究现状进行了介绍,调研结果表明相比传统骨架材料,MOF作为骨架的复合水合盐材料的性能更加优越。还总结了反应器内水合盐-湿空气传热传质机理、数学模型以及相关实验研究及性能优化。基于以上分析结果,指出了未来研究的工作重点,即高性能复合水合盐材料的开发、反应器微纳尺度的传热传质研究以及反应器结构优化,这对提高反应器内热质传递速率、改善稳定性等具有重要意义。

关键词: 热化学储热, 水合盐, 金属有机框架MOF, 传热传质

Abstract:

Thermochemical energy storage using salt hydrates has the advantages of high heat storage density, less heat loss, and seasonal storage adaptability. It is an effective method to provide clean heating along with renewable energy, such as solar energy, to achieve carbon neutrality. A heat storage reactor is an important component of salt hydrate-based thermochemical energy storage; moreover, it determines the efficiency and reliability of energy storage systems. However, owing to unsuitable material formulations and structural designs, a heat storage reactor has limitations such as low thermal power, poor cycle stability, and short service life. To address these issues, this study reviewed state-of-the-art methods for reactor optimization in terms of salt hydrate formulation and heat and mass transfer mechanisms. Unlike existing review studies, this study introduced a novel type of material, i.e., a metal-organic framework (MOF), in the field of salt hydrate-based thermochemical energy storage. The results demonstrate that the performance of composite salt hydrates based on MOFs is better than that of traditional skeleton materials. This study summarizes the heat and mass transfer mechanisms and mathematical models of the reactor and related experimental research and performance optimization. Based on an in-depth analysis, this study highlights the priorities of future research, including the development of high-performance composite salt hydrates, a study of the reactor on both micro- and nano-scales, and optimization of the reactor structure. This study is significant for suggesting improvements in the heat mass transfer performance and stability of reactors for thermochemical energy storage.

Key words: thermochemical energy storage, salt hydrates, metal-organic frameworks, heat and mass transfer

中图分类号: