1 |
ANDRÉ L, ABANADES S, FLAMANT G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 703-715.
|
2 |
PAN Z H, ZHAO C Y. Gas-solid thermochemical heat storage reactors for high-temperature applications[J]. Energy, 2017, 130: 155-173.
|
3 |
ERVIN G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61.
|
4 |
PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610.
|
5 |
PAN Z H, ZHAO C Y. Dehydration/hydration of MgO/H2O chemical thermal storage system[J]. Energy, 2015, 82: 611-618.
|
6 |
WANG T, ZHAO C Y, YAN J. Investigation on the Ca(OH)2/CaO thermochemical energy storage system with potassium nitrate addition[J]. Solar Energy Materials and Solar Cells, 2020, 215: doi: 10.1016/j.solmat.2020.110646.
|
7 |
ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. The calcium-looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.109252.
|
8 |
YAN Y L, WANG K, CLOUGH P T, et al. Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: A review[J]. Fuel Processing Technology, 2020, 199: doi: 10.1016/j.fuproc.2019.106280.
|
9 |
KATO Y, YAMASHITA N, KOBAYASHI K, et al. Kinetic study of the hydration of magnesium oxide for a chemical heat pump[J]. Applied Thermal Engineering, 1996, 16(11): 853-862.
|
10 |
KATO Y, KOBAYASHI K, YOSHIZAWA Y. Durability to repetitive reaction of magnesium oxide/water reaction system for a heat pump[J]. Applied Thermal Engineering, 1998, 18(3/4): 85-92.
|
11 |
KATO Y, NAKAHATA J, YOSHIZAWA Y. Durability characteristics of the hydration of magnesium oxide under repetitive reaction[J]. Journal of Materials Science, 1999, 34(3): 475-480.
|
12 |
NAHDI K, ROUQUEROL F, TRABELSI AYADI M. Mg(OH)2 dehydroxylation: A kinetic study by controlled rate thermal analysis (CRTA)[J]. Solid State Sciences, 2009, 11(5): 1028-1034.
|
13 |
CHAISE A, MARTY P, DE RANGO P, et al. A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4564-4572.
|
14 |
SCHAUBE F, WÖRNER A, TAMME R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of Solar Energy Engineering, 2011, 133(3): doi:10.1115/1.4004245.
|
15 |
SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559.
|
16 |
ROßKOPF C, HAAS M, FAIK A, et al. Improving powder bed properties for thermochemical storage by adding nanoparticles[J]. Energy Conversion and Management, 2014, 86: 93-98.
|
17 |
FARCOT L, LE PIERRÈS N, MICHEL B, et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20: 109-119.
|
18 |
SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873.
|
19 |
SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873.
|
20 |
YAN J, PAN Z H, ZHAO C Y. Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode[J]. Applied Energy, 2020, 275: doi: 10.1016/j.apenergy.2020.115356.
|
21 |
CRIADO Y A, ALONSO M, ABANADES J C. Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12594-12601.
|
22 |
ANGERER M, BECKER M, HÄRZSCHEL S, et al. Design of a MW-scale thermo-chemical energy storage reactor[J]. Energy Reports, 2018, 4: 507-519.
|
23 |
FLEGKAS S, BIRKELBACH F, WINTER F, et al. Fluidized bed reactors for solid-gas thermochemical energy storage concepts-Modelling and process limitations[J]. Energy, 2018, 143: 615-623.
|
24 |
BELLAN S, KODAMA T, MATSUBARA K, et al. Heat transfer and particulate flow analysis of a 30 kW directly irradiated solar fluidized bed reactor for thermochemical cycling[J]. Chemical Engineering Science, 2019, 203: 511-525.
|
25 |
CRIADO Y A, HUILLE A, ROUGÉ S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205.
|
26 |
ZAMENGO M, RYU J, KATO Y. Thermochemical performance of magnesium hydroxide-expanded graphite pellets for chemical heat pump[J]. Applied Thermal Engineering, 2014, 64(1/2): 339-347.
|
27 |
PAN Z H, YAN J, ZHAO C Y. Numerical analyses and optimization of tubular thermochemical heat storage reactors using axisymmetric thermal lattice Boltzmann model[J]. Chemical Engineering Science, 2019, 195: 737-747.
|
28 |
DING J M, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538.
|
29 |
GIDASPOW D. High production circulating fluidized bed polymerization reactors[J]. Powder Technology, 2019, 357: 108-116.
|
30 |
ETTEHADIEH B, GIDASPOW D, LYCZKOWSKI R W. Hydrodynamics of fluidization in a semicircular bed with a jet[J]. AIChE Journal, 1984, 30(4): 529-536.
|
31 |
GIDASPOW D, LU H L. Collisional viscosity of FCC particles in a CFB[J]. AIChE Journal, 1996, 42(9): 2503-2510.
|
32 |
KUNII D, LEVENSPIEL O. Bubbling bed model for kinetic processes in fluidized beds. Gas-solid mass and heat transfer and catalytic reactions[J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7(4): 481-492.
|
33 |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
|
34 |
AGU C E, TOKHEIM L A, EIKELAND M, et al. Improved models for predicting bubble velocity, bubble frequency and bed expansion in a bubbling fluidized bed[J]. Chemical Engineering Research and Design, 2019, 141: 361-371.
|