储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 1058-1075.doi: 10.12028/j.issn.2095-4239.2017.00094
冷光辉1,2,8,曹 惠1,彭 浩3,常 春4,熊亚选5,姜 竹1,丛 琳1,赵彦琦1,张 赣1,谯 耕6,张叶龙7,许 永7,赵伟杰7,丁玉龙1
收稿日期:
2017-06-07
修回日期:
2017-06-25
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
丁玉龙,教授,主要研究方向为储能系统、储能过程中多相流动与传热强化、无机中高温复合储能材料、深冷(液化)空气储能、压缩空气储能等,E-mail:Y.ding@bham.ac.uk。
作者简介:
冷光辉(1984—),男,博士,E-mail:lengg@bham.ac.uk;
基金资助:
LENG Guanghui 1,2,8, CAO Hui1, PENG Hao3, CHANG Chun4, XIONG Yaxuan5, JIANG Zhu1, CONG Lin1, ZHAO Yanqi1, ZHANG Gan1, QIAO Geng6, DING Yulong1
Received:
2017-06-07
Revised:
2017-06-25
Online:
2017-09-01
Published:
2017-09-01
摘要: 储热材料的研究是当今世界研究的热点。本文综述了近几年关于显热储热材料,潜热储热材料,热化学储热材料的材料体系、制备技术及性能特点。对各种储热材料组成、结构、制备工艺、性能特点、存在的问题、应用前景及未来的发展趋势进行了分析讨论。每种储热材料都存在着各自的优点和不足,为了充分发挥材料的优点,尽量避免其缺点,采用制备复合材料的方法是储热材料研究和应用的重要趋势。目前对新型复合储热材料的制备方式主要有:① 物理和化学方法制备微/纳米胶囊相变材料;② 宏观包裹法;③ 混合烧结法制备定型复合相变材料;④ 吸附浸渍法制备复合相变材料等,本文对这些复合储热材料的研究和应用趋势进行了论述。
冷光辉1,2,8,曹 惠1,彭 浩3,常 春4,熊亚选5,姜 竹1,丛 琳1,赵彦琦1,张 赣1,谯 耕6,张叶龙7,许 永7,赵伟杰7,丁玉龙. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075.
LENG Guanghui 1,2,8, CAO Hui1, PENG Hao3, CHANG Chun4, XIONG Yaxuan5, JIANG Zhu1, CONG Lin1, ZHAO Yanqi1, ZHANG Gan1, QIAO Geng6, DING Yulong1. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075.
[1] 鲍求培. 导热油技术的新进展[J]. 粮油食品科技, 2006, 14(4): 62-63. BAO Qiupei. New progress of heat transfer oil technology[J]. Science and Technology of Cereals, Oils and Foods, 2006, 14(4): 62-63. [2] 冯程燕. 导热油技术及发展概况[J]. 合成纤维, 2007(4): 36-38. FENG Chengyan. Heat transfer oil technology and development[J]. Synthetic Fiber in China, 2007 (4): 36-38. [3] 常春, 肖澜, 王红梅, 等. 储热材料在太阳能热发电领域中的应用与展望[J]. 新材料产业, 2012 (7): 12-19. CHANG Chun, XIAO Lan, WANG Hongmei, et al. Application and prospect of heat storage materials in solar thermal power generation[J]. Advanced Materials Industry, 2012 (7): 12-19. [4] 李鹏, 魏朝良, 张东恒, 等. 高温导热油发展概述[J]. 润滑油, 2016, 31(4): 1-5. LI Peng, WEI Chaoliang, ZHANG Donghuan, et al. Overview on development of high temperature heat transfer fluids[J]. Lubricating Oil, 2016, 31(4): 1-5. [5] 姚永辉, 赵晓阳, 王华, 等. 高温合成导热油的研究进展[J]. 广州化工, 2013, 41(1): 43-45. YAO Yonghui, ZHAO Xiaoyang, WANG Hua, et al. Research progress on high-temperature synthetic heat transfer fluid[J]. Guangzhou Chemical Industry, 2013, 41(1): 43-45. [6] 郭玉, 金洪光, 牛远方, 等. 国内外导热油的研究进展[J]. 河北化工, 2008, 31(6): 17-19. GUO Yu, JIN Hongguang, NIU Yuanfang, et al. Study and development on heat-conducting oil[J]. Hebei Chemical Engineering and Industry, 2008, 31(6): 17-19. [7] 刘腾跃, 胡芃, 钱辉, 等. SiO2-导热油纳米流体的黏度研究[J]. 工程热物理学报, 2016, 37(1): 25-28. LIU Tengyue, HU Peng, QIAN Hui, et al. Investigation of viscosity of SiO2 heat transfer oil Nanofluid[J]. Journal of Engineering Thermophysics, 2016, 37(1): 25-28. [8] 邓诗铅, 周永敏, 黄小珠, 等. L-QC310导热油的研制[J]. 润滑油, 2016, 31(2): 26-30. DENG Shiqian, ZHOU Yongmin, HUANG Xiaozhu, et al. Study on L-QC310 heat transfer oil[J]. Lubricating Oil, 2016, 31(2): 26-30. [9] 刘天洋, 曹志伟, 樊星, 等. 新型耐高温高闪点导热油—1, 3-二辛基1, 1, 3, 3-四苯基二硅氧烷的合成[J]. 化工新型材料. 2014, 42(2): 83-85. LIU Tianyang, CAO Zhiwei, FAN Xing, et al. Synthesis of 1, 3-diocty 1-1,1,3,3-tetraphenyl disiloxane with high thermal stability and flash point[J]. New Chemical Materials. 2014, 42(2): 83-85. [10] WILLIAMS D F. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (AHTR)[R]. USA: Oak Ridge National Laboratory(ORNL), 2006. [11] BRADSHAW R W, BROSSEAU D. Low-melting point inorganic nitrate salt heat transfer fluid: US 7588694[P]. 2009-9-15. [12] GOODS S H, BRADSHAW R W, PRAIRIE M R, et al. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates[R]. USA: Sandia National Laboratories, 1994. [13] WU Y T, LIU S W, XIONG Y X, et al. Experimental study on the heat transfer characteristics of a low melting point salt in a parabolic trough solar collector system[J]. Applied Thermal Engineering, 2015, 89: 748-754. [14] RAADE J W, PADOWITZ D. Development of molten salt heat transfer fluid with low melting point and high thermal stability[J]. Journal of Solar Energy Engineering, 2011, 133(3): 91-96. [15] LOVEGROVE K, LUZZI A, KREETZ H. A solar-driven ammonia- based thermochemical energy storage system[J]. Solar Energy, 1999, 67: 309-316. [16] TAMME R. Concrete storage: Update on the German concrete TES program[C]//Workshop on thermal storage for trough power systems, 2003. [17] TAMME R, STEINMANN W, LAING D. Thermal energy storage technology for industrial process heat applications[C]//Proceedings of the International Solar Energy Conference, 2005: 417-422. [18] LAING D, STEINMANN WD, TAMME R, et al. Solid media thermal storage for parabolic trough power plants[J]. Solar Energy, 2006, 80: 1283-1289. [19] YUAN Kunjie, ZHANG Zhengguo, FANG Xiaoming, et al. Research progress of inorganic hydrated salts and their phase change heat storage composites[J]. Chem. Ind. Eng. Process, 2016, 35(6): 1820-1826. [20] GE Zhiwei, YE Feng, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Sci. Technol., 2012, 1(2): 89-102. [21] ZHANG Helei, FANG Xie, ZHAO Yingjie. Progress in phase change materials and technologies[J]. Mater. Rev., 2014, 28(7): 26-32. [22] ZHOU D, ZHAO C Y, TIAN Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Appl. Energy, 2012, 92: 593-605. [23] TAO Wenbo, XIE Ruhe. Research and development of organic phase change materials for cool thermal energy storage[J]. J. Refrig., 2016, 37(1): 52-59. [24] WU Weidong, TANG Hengbo, MIAO Pengke, et al. Dispersion stability of nano-organic composite phase change materials for cool storage in air-conditioning[J]. Chem. Ind. Eng. Process., 2015, 34(5): 1371-1376. [25] KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures[J]. Sol. Energy Mater. Sol. Cells, 2017, 167: 109-120. [26] KONG Weibo, YANG Yunyun, ZHOU Changlin, et al. Novel thermosetting phase change materials with polycarbonatediol based curing agent as supporting skeleton for thermal energy storage[J]. Energy Build., 2017, 146: 12-18. [27] HAN Lipeng, MA Guixiang, XIE Shaolei, et al. Thermal properties and stabilities of the eutectic mixture: 1, 6-hexanediol/lauric acid as a phase change material for thermal energy storage[J]. Appl. Therm. Eng., 2017, 116: 153-159. [28] DINKER. A, AGARWAL M, AND AGARWAL G D. Heat storage materials, geometry and applications: A review[J]. J. Energy Inst., 2017, 90(1): 1-11. [29] KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renew. Sustain. Energy Rev., 2010, 14(3): 955-970. [30] TAO Y B, LIN C H, HE Y L, et al. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Convers. Manag., 2015, 97: 103-110. [31] GIMENEZ P, FERERES S. Glass encapsulated phase change materials for high temperature thermal energy storage[J]. Renew. Energy, 2017, 107: 497-507. [32] 盛强, 邢玉明, 王泽. 泡沫金属复合相变材料的制备与性能分析[J]. 化工学报, 2013, 64(10): 3565-3570. SHENG Qiang, XIN Yuming, WANG Ze. Preparation and performance analysis of metal foam composite phase change material[J]. CIESC Journal, 2013, 64(10): 3565-3570. [33] HUANG B, CAI J, YAN L, ZHENG Z. Biomimetic synthesis and thermal studies of hydrous salt as phase change materials with adjustable phase transition temperature[J]. New Chem. Mater., 2013, 41(2): 132-134. [34] MA Y, SUN S, LI J, TANG G. Preparation and thermal reliabilities of microencapsulated phase change materials with binary cores and acrylate-based polymer shells[J]. Thermochim. Acta, 2014, 588: 38-46. [35] WEI K, MA B, WANG H, et al. Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells[J]. Polym. Bull., 2017, 74(2): 359-367. [36] GIRO-PALOMA J, MARTÍNEZ M, CABEZA L F, et al. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review[J]. Renew. Sustain. Energy Rev., 2016, 53: 1059-1075. [37] HAN P, QIU X, LU L, et al. Fabrication and characterization of a new enhanced hybrid shell microPCM for thermal energy storage[J]. Energy Convers. Manag., 2016, 126: 673-685. [38] MILIÁN Y E, GUTIÉRREZ A, GRÁGEDA M, et al. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J].Renew. Sustain. Energy Rev., 2017, 73: 983-999. [39] 李刚, 孙国庆. 无机芯微胶囊相变材料的研究进展[J]. 无机盐工业, 2014, 46(10): 14-17. LI Gang, SUN Guoqing. Research progress of microencapsulated inorganic core phase change materials[J]. Inorganic Chemicals Industry, 2014, 46(10): 14-17. [40] 郝敏, 李忠辉, 吴秋芳, 等. 相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(9): 98-103. HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change material[J]. Materials Review, 2014, 28(9): 98-103. [41] HASSAN A, SHAKEEL LAGHARI M, RASHID Y. Micro- encapsulated phase change materials: A Review of encapsulation, safety and thermal characteristics[J]. Sustainability, 2016, 8(10): doi: 10.3390/su8101046. [42] 刘硕, 张东. 纳米胶囊相变材料研究进展[J]. 化学通报, 2008, 71(12): 906-911. LIU Shuo, ZHANG Dong. Progress of the nano-encapsulated phase change materials[J]. Chemistry, 2008, 71(12): 906-911 [43] 周全, 郭红斌, 李东旭, 等. 有机相变储能材料的封装技术及热物性测试方法[J]. 材料导报, 2012, 19: 68-71. ZHOU Quan, GUO Hongbin, LI Dongxu, et al. Encapsulation and thermal property testing methods of organic phase material[J]. Material Review, 2012, 19: 68-71. [44] JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renew. Sustain. Energy Rev., 2014, 31: 531-542. [45] LI W, SONG G, TANG G, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell[J]. Energy, 2011, 36(2): 785-791. [46] LATIBARI S T, MEHRALI M, MEHRALI M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method[J]. Energy, 2013, 61: 664-672. [47] HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Appl. Energy, 2003, 74(1): 195-202. [48] GRAHAM M, SHCHUKINA E, DE CASTRO P F, et al. Nanocapsules containing salt hydrate phase change materials for thermal energy storage[J]. J. Mater. Chem. A, 2016, 4(43): 16906- 16912. [49] ZHANG L, YANG W, JIANG Z, et al. Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance[J]. Appl. Energy, 2017, 197: 354-363. [50] LIANG S, LI Q, ZHU Y, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion[J]. Energy, 2015, 93: 1684-1692. [51] LI D, WANG J, WANG Y, et al. Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials[J]. Energy, 2016, 106: 221-230. [52] LIU C, RAO Z, ZHAO J, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. [53] GE Z, YE F, DING Y. Composite materials for thermal energy storage: Enhancing performance through microstructures[J]. ChemSusChem, 2014, 7(5): 1318-1325. [54] GE Z, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. [55] YE F, GE Z, DING Y, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60. [56] QIN Y, LENG G, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technol., 2015, 282: 37-42. [57] QIN Y, YU X, LENG G H, et al. Effect of diatomite content on diatomite matrix based composite phase change thermal storage material[J]. Mater. Res. Innov., 2014, 18: S2453-S2456. [58] DENG Y, LI J, QIAN T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. J. Mater. Sci. Technol., 2017, 33(2): 198-203. [59] QIAN T, LI J, MIN X, et al. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material[J]. Energy Convers. Manag., 2015, 98: 34-45. [60] QIAN T, LI J, DENG Y. Flower-like hollow porous silica sphere for high-temperature thermal storage[J]. Applied Thermal Engineeing, 2016, 106: 423-426. [61] JIANG Z, LENG G, YE F, et al. Form-stable LiNO3-NaNO3-KNO3- Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Convers. Manag., 2015, 106: 165-172. [62] DUAN Z J, ZHANG H Z, SUN L X, et al. CaCl2•6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115: 111-117 [63] WU Y, WANG T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage[J]. Energy Convers. Manag., 2015, 101: 164-171. [64] LIU S, YANG H. Porous ceramic stabilized phase change materials for thermal energy storage[J]. RSC Advances, 2016, 6: 48033-48042. [65] XIAO X, ZHANG P, LI M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Convers. Manag., 2013, 73: 86-94. [66] LI R, ZHU J, ZHOU W, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Appl. Therm. Eng., 2016, 103: 452-458. [67] WANG Y, LIANG D, LIU F, et al. A polyethylene glycol/hydroxyapatite composite phase change material for thermal energy storage[J]. Appl. Therm. Eng., 2017, 113: 1475-1482. [68] BICER A, SARI A. New kinds of energy-storing building composite PCMs for thermal energy storage[J]. Energy Convers. Manag., 2013, 69: 148-156. [69] JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/ diatomite composites for enhancing thermal properties[J]. Int. J. Heat Mass Transf., 2013, 62: 711-717. [70] NOMURA T, OKINAKA N, AKIYAMA T. Impregnation of porous material with phase change material for thermal energy storage[J]. Mater. Chem. Phys., 2009, 115(2/3): 846-850. [71] SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J]. Sol. Energy Mater. Sol. Cells, 2009, 93(5): 571-576. [72] ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Sol. Energy, 2010, 84(8): 1402-1412 [73] LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Appl. Therm. Eng., 2012, 37: 1-9 [74] XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Appl. Energy, 2013, 112: 1357-1366 [75] WENTWORTH W E, CHEN E. Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy, 1976, 18: 205-214. [76] BAO Z W, ZHANG Z X. Research progress of high temperature thermochemical heat storage technologies[C]//The Third China Energy Scientist Forum, Beijing, 2011. [77] PARDO P, DEYDIER A, ANXIONNAZ M Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. [78] PASKEVICIUS M, SHEPPARD D A, BUCKLEY C E. Thermodynamics changes in mechanochemically synthesized magnesium hydride nanoparticles[J]. Journal of the American Chemical Society, 2010, 132: 5077-5083. [79] FELDERHOFF M, BOGDANOVIC B. Review: High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences, 2009, 10(1): 325-344. [80] CAMPOSTRINI R, ABDELLATIEF M, LEONI M. Activation energy in the thermal decomposition of MgH2 powders by coupled TG-MS measurements[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(1): 225-240. [81] SHEPPARD D A, PASKEVICIUS M, BUCKLEY C E. Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium[J]. Chemistry of Materials, 2011, 23(19): 4298-4300. [82] MIRABILE G D, MONTONE A, DI S I. Improving magnesium based systems for efficient hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2016, 41(32): 14455-14460. [83] BHOURI M, BURGER I, LINDER M. Feasibility analysis of a novel solid-state H2 storage reactor concept based on thermochemical heat storage: MgH2 and Mg(OH)2 as reference materials[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20549-20561. [84] HARRIES D N, PASKEVICIUS M, SHEPPARD D. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549. [85] MUROYAMA A P, SCHRADER A J, LOUTZENHISER P G. Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: Kinetic analyses[J]. Solar Energy. 2015, 122: 409-418. [86] AGRAFIOTIS C, TESCARI S, ROEB M. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114: 459-475. [87] AGRAFIOTIS C, ROEB M, SATTLER C. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 4: Screening of oxides for use in cascaded thermochemical storage concepts[J]. Solar Energy, 2016, 139: 695-710 [88] CARRILLO A J, MOYA J, BAYON A, et al. Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones[J]. Solar Energy Materials & Solar Cells, 2014, 123: 47-57. [89] BLOCK T, KNOBLAUCH N, SCHMUCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta, 2014, 577: 25- 32. [90] AGRAFIOTIS C, STORCH H, ROEB M, et al. Solar thermal reforming of methane feedstocks for hydrogen and syngas production: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 656-682. [91] CHEN J, WANG Y, LANG X, et al. Energy-efficient methods for production methane from natural gas hydrates[J]. Journal of Energy Chemistry, 2015, 24(5): 552-558. [92] KUGELER K, NIESSEN H F, RÖTH-KAMAT M. Transport of nuclear heat by means of chemical energy (nuclear long distance energy)[J]. Nuclear Engineering and Design, 1975, 34: 65-72. [93] RATHOD V P, SHETE J, BHALE P V. Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy[J]. International Journal of Hydrogen Energy, 2016, 41(1): 132-138. [94] ANTZARA A, HERACLEOUS E, BUKUR D B, et al. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 32: 115-128. [95] BUCK R, MUIR J F, HOGAN R E. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project[J]. Solar Energy Materials, 1991, 24(1/2): 449-463. [96] KIRILLOV V A. Catalyst application in solar thermochemistry[J]. Solar Energy, 1999, 66(2): 143-149. [97] DAVEY R, STEIN W. Radiation nation[J]. Solar Energy, 2006, 1443: 23-24. [98] HUANG T, HUANG W, HUANG J, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts[J]. Fuel Processing Technology, 2011, 92(10): 1868-1875. [99] HUANG J, MA R X, HUANG T, et al. Carbon dioxide reforming of methane over Ni/Mo/SBA-15-La2O3 catalyst: Its characterization and catalytic performance[J]. Journal of Natural Gas Chemistry, 2011, 20(5): 465-470. [100] CRIADO Y A, HUILLE A, ROUGÉ S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2016, 313: 1194-1205. [101] SAKELLARIOU K G, KARAGIANNAKIS G, CRIADO Y A, et al. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122: 215-230. [102] YAN J, ZHAO C Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138: 86-92. [103] YAN J, ZHAO C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284. [104] CRIADO Y A, ALONSO M, ABANADES J C, et al. Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors[J]. Applied Thermal Engineering, 2014, 73(1): 1087-1094. [105] CRIADO Y A, ALONSO M, ABANADES J C. Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage[J]. Solar Energy, 2016, 135: 800-809. [106] SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. [107] GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part1-concepts, materials and modelisation[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. [108] DARKWA K. Thermochemical energy storage in inorganic oxides: an experimental evaluation[J]. Applied Thermal Engineering, 1998, 18(6): 387-400. [109] KREETZ H, LOVEGEOVE K. Theoretical analysis and experimental results of a 1 kW chem ammonia synthesis reactor for a solar thermo chemical energy storage system[J]. Solar Energy, 1999, 67(4/5/6): 287-296. [110] KREETZ H, LOVEGROVE K. Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system[J]. Solar Energy, 2002, 73(3): 187-194. [111] LOVEGROVE K, LUZZI A, SOLDIANI I, et al. Developing ammonia based thermochemical energy storage for dish power plants[J]. Solar Energy, 2004, 76: 331-337. [112] LUZZI A, LOVEGEOVE K. Techno-economic analysis of a 10 MW solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2): 91-101. [113] LOVEGROVE K, BURGESS G, PYE J. A new 500m² paraboloidal dish solar concentrator[J]. Solar Energy, 2011, 85: 620-626. [114] 廖葵. 氨基热化学储能式太阳能热发电系统的应用基础研究[D]. 广州: 华南理工大学, 2008. LIAO K. Application research of ammonia-based thermochemical energy-storing solar-energy electricity generation system[D]. Huangzhou: South China University of Technology, 2008 [115] KALYVA A E, VAGIA E C, KONSTANDOPOULOS A G, et al. Particle model investigation for the thermochemical steps of the sulfur-ammonia water splitting cycle[J]. International Journal of Gydrogen Energy, 2017, 42(6): 3621-3629. [116] L'VOV B V. Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach[J]. Reaction Kinetics, Mechanisms and Catalysis. 2015, 114(1): 31-40. [117] 崔素萍, 迟碧川, 王亚丽. 石灰石分解反应的等温热重法研究[J]. 新世纪水泥导报, 2012, 3: 33-35. CUI S P, CHI B C, WANG Y L. Study on limestone decomposition reaction by means of isothermal thermos-gravimetric analysis[J]. Cement Guide for New Epoch, 2012, 3: 33-35. [118] 尹静殊, 方圆, 朱贤青. 微型流化床-快速过程红外热分析仪对CaCO3 热分解的动力学研究[J]. 工程热物理学报, 2014, 35(6): 1216-1220. YI J S, FANG Y, ZHU X Q. Kinetic study on CaCO3 Decomposition via MFB-IR thermal analyzer[J]. Journal of Engineering Thermophysics, 2014, 35(6): 1216-1220. [119] CHACARTEGUI R, ALOVISIO A, ORTIZ C, et al. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle[J]. Applied Energy, 2016, 173: 589-605. |
[1] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[2] | 郝金鹏, 杜迎春, 伍弘, 和琨, 汪垒. 侧壁面正弦加热条件下电场强化固液相变研究[J]. 储能科学与技术, 2022, 11(5): 1446-1454. |
[3] | 杨娜, 王成成, 杨慧, 胡志昊, 童莉葛, 李仲博, 王立, 丁玉龙, 李娜. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
[4] | 徐钿昕, 田希坤, 闫君, 叶强, 赵长颖. TiO2改性的CaCO3热化学储热的反应性能[J]. 储能科学与技术, 2022, 11(1): 1-8. |
[5] | 韩翔宇, 王亮, 葛志伟, 凌浩恕, 林曦鹏, 陈海生, 彭珑. Co3O4/CoO氧化还原反应储/释热动力学特性[J]. 储能科学与技术, 2021, 10(5): 1701-1708. |
[6] | 杨博文, 闫君, 赵长颖. 氢氧化镁热化学储热系统流化床反应器性能分析[J]. 储能科学与技术, 2021, 10(5): 1735-1744. |
[7] | 罗伊默, 芮金金, 徐薇, 彭晋卿, 折晓会, 李念平, 丁玉龙. 热化学储热反应器内水合盐物性调控及传热传质优化研究进展[J]. 储能科学与技术, 2021, 10(4): 1273-1284. |
[8] | 罗海华, 沈强, 林俊光, 张艳梅, 徐云柯. 新型低熔点混合熔盐储热材料的开发[J]. 储能科学与技术, 2020, 9(6): 1755-1759. |
[9] | 郝茂森, 刘洪芝, 王婉桐, 吕静. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 2020, 9(3): 791-796. |
[10] | 凌浩恕, 何京东, 徐玉杰, 王亮, 陈海生. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868. |
[11] | 马美秀, 李振东, 康伟, 曾洪涛, 苏铁山, 胡荣辉, 胡晓. 高温相变蓄热电暖器的数值模拟及验证[J]. 储能科学与技术, 2020, 9(1): 88-93. |
[12] | 张志超, 郑莉莉, 杜光超, 冯燕, 王栋, 戴作强, 张洪生. 锂离子电池充放电过程中产热特性研究综述[J]. 储能科学与技术, 2019, 8(S1): 32-37. |
[13] | 李金田, 茅靳丰. 无机水合盐三水乙酸钠作相变储热材料的研究进展[J]. 储能科学与技术, 2018, 7(5): 881-887. |
[14] | 邓 畅,潘智豪,闫 君,赵长颖. 氧化钙-氢氧化钙热化学储热系统放热数值分析[J]. 储能科学与技术, 2018, 7(2): 248-254. |
[15] | 程晓敏1, 2,徐 凯1,朱 闯1,喻国铭2,刘 志2. 高温处理对LiNO3-NaNO3-KNO3熔盐固相线温度的影响[J]. 储能科学与技术, 2017, 6(5): 1094-1098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||