1 |
International Energy Agency . Transition to sustainable buildings: Strategies and opportunities to 2050[M]. France, Paris: OECD/IEA, 2013.
|
2 |
SANSANIWAL S K , SHARMAV, MATHURJ . Energy and exergy analyses of various typical solar energy applications: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1576-1601.
|
3 |
AYDIN D , CASEY S P , RIFFAT S . The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367.
|
4 |
Hasila JARIMI , Devrim AYDIN , ZHANG Yanan , et al . Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery[J]. International Journal of Low-Carbon Technologies, 2018, 14(1): 44-69.
|
5 |
Guruprasad ALVA , LIN Yaxue , FANG Guiyin . An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.
|
6 |
赵璇, 赵彦杰, 王景刚, 等 . 太阳能跨季节储热技术研究进展[J].新能源进展, 2017, 5(1): 73-80.
|
|
ZHAO Xuan , ZHAO Yanjie , WANG Jinggang , et al . Research progress on solar seasonal thermal energy storage[J]. Advances in New and Renewable Energy, 2017, 5(1): 73-80.
|
7 |
张晓燕, 高建民, 王昌 . 石蜡/纳米石墨复合相变储热材料的换热与放热效率[J]. 干燥技术与设备, 2011, 1(6): 291-296.
|
|
ZHANG Xiaoyan , GAO Jianmin , WANG Chang . The heat transfer and heat release rate of paraffin/nano graphite composite phase change heat storage material[J]. Drying Technology & Equipment, 2011, 1(6): 291-296.
|
8 |
马小琨, 徐超, 于子博, 等 . 基于水合盐热化学吸附的储热技术[J].科学通报, 2015, 60(36): 3569-3579.
|
|
MA Xiaokun , XU Chao , YU Zibo , et al . A review of salt hydrate-based sorption technologies for long-term thermal energy storage[J].Chinese Science Bulletin, 2015, 60 (36): 3569-3579.
|
9 |
SCAPINO L , ZONDAG H A , BAEL JVAN D , et al . Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948.
|
10 |
李威, 陈威, 王丹丹 . 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21.
|
|
LI Wei , CHEN Wei , WANG Dandan . Research and development of thermochemical energy storage based on hydrated salt[J]. Refrigeration and Air-Conditioning, 2017, 17(8): 14-21.
|
11 |
顾清之 . 镁-氢化镁热化学蓄热系统数值模拟和实验研究[D]. 上海: 上海交通大学, 2013.
|
|
GU Qingzhi . Numerical simulation and experimental study of magnesiummagnesium hydride themochemical heat storage system[D]. Shanghai: Shanghai Jiaotong University, 2013.
|
12 |
Herbert ZONDAG , Benjamin KIKKERT , Simon SMEDING , et al . Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109(1): 360-365.
|
13 |
FERCHAUD C J , ZONDAG H A, VELDHUIS J B J, et al . Study of the reversible water vapour sorption process of MgSO4·7H2O and MgCl2·6H2O under the conditions of seasonal solar heat storage[C]//6th European Thermal Sciences Conference.France, Poitiers: Journal of Physics: Conference Series, 2012, 395(1): 562-572.
|
14 |
ZONDAG H A , MVAN ESSEN V , BLEIJENDAAL L P J , et al. Application of MgCl 2·6H2 O for thermochemical seasonal solar heat storage[C]//The 5th International Renewable Storage Conference IRES 2010, Berlin, Germany: Energy Research Ceter of Netherland, 2010.
|
15 |
SOGUTOGLU L C , DONKERS P A J , FISCHER H R , et al . In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S[J]. Applied Energy, 2018, 215: 159-173.
|
16 |
MVAN ESSEN V , ZONDAG H A , GORES J C , et al . Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): doi: 10.1115/1.4000275.
|
17 |
FOPAH Lele Armand, Frédéric KUZNIK , Oliver OPEL , et al . Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion and Management, 2015,106: 1327-1344.
|
18 |
FOPAH-LELE A , TAMBA J G . A review on the use of SrBr2 ·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 175-187.
|
19 |
LAHMIDI H , MAURAN S , GOETZ V . Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893.
|
20 |
ZONDAG H A , VAN E V, BLEIJENDAAL L P J , et al. Application of MgCl 2·6H2 O for thermochemical seasonal solar heat storage[C]//The 5th International Renewable Storage Conference IRES 2010, Berlin, Germany: Energy Research Ceter of Netherland, 2010.
|
21 |
LAHMIDI H , MAURAN S , GOETZ V . Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893.
|
22 |
YU N , WANG R Z , WANG L W . Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
|
23 |
Junhee LEE , Hironao OGURA , Satoshi SATO . Reaction control of CaSO4 during hydration/dehydration repetition for chemical heat pump system[J]. Applied Thermal Engineering, 2014, 6(1): 192-199.
|
24 |
杨希贤, 窪田光宏, 何兆红, 等 . 化学蓄热材料的开发与应用研究进展[J]. 新能源进展, 2014, 2(5): 397-402.
|
|
YANG Xixian , Mitsuhiro KUBOTA , HE Zhaohong , et al . Research progress on the development and application of chemical heat storage materials[J]. Advances in New and Renewable Energy, 2014, 2(5): 397-402.
|
25 |
ARISTOV Y I . New family of solid sorbents for adsorptive cooling: Material scientist approach[J]. Journal of Engineering Thermophysics, 2007, 16(2): 63-72.
|
26 |
ARISTOV Y I , MARCO G D , TOKAREV M M , et al . Selective water sorbents for multiple applications, 3. CaCl2 solution confined in micro- and mesoporous silica gels: Pore size effect on the “solidificationmelting” diagram[J]. Reaction Kinetics and Catalysis Letters, 1997, 61(1): 147-154.
|
27 |
ARISTOV Y I , TOKAREV M M , RESTUCCIA G , et al . Selective water sorbents for multiple applications, 2. CaCl2 confined in micropores of silica gel: Sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 335-342.
|
28 |
ARISTOV Y I , TOKAREV M M , CACCIOLA G , et al . Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333.
|
29 |
Abbas MEHRABADI , Mohammed FARID . New salt hydrate composite for low-grade thermal energy storage[J]. Energy, 2018, 164: 194-203.
|
30 |
CASEY S P , ELVINS J , RIFFAT S , et al . Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials[J]. Energy and Buildings, 2014, 84: 412-425.
|
31 |
XU Chao , YU Zibo , XIE Yunyun , et al . Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259.
|
32 |
LIU Hongzhi , Katsunori NAGANO , Daichi SUGIYAMA , et al . Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480.
|
33 |
ZHANG Y N , WANG R Z , ZHAO Y J , et al . Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115(1): 120-128.
|
34 |
GREKOVA A D , GORDEEVA L G , ARISTOV Y I . Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
|
35 |
BRANCATO V , GORDEEVA L G , SAPIENZA A , et al . Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2018,105: 92-100.
|
36 |
杨希贤, 黄宇宏, 王智辉, 等 . 碳纳米/氢氧化锂复合材料的低温化学蓄热性能研究[J]. 工程热物理学报, 2016, 37 (12): 2512-2516.
|
|
YANG Xixian , HUANG Hongyu , WANG Zhihui , et al . The performance investigation on nano carbon-modified lithium hydroxide for low-temprature chemical heat storage[J]. Journal of Engineering Thermophysics, 2016, 37 (12): 2512-2516.
|
37 |
YU N , WANG R Z , LU Z S , WANG L W . Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670.
|
38 |
Alexandra GREKOVA , Larisa GORDEEVA , Yuri ARISTOV . Composite sorbents “Li/Ca halogenides inside multi-wall carbon nanotubes” for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 155: 176-183.
|
39 |
GREKOVA A D , GORDEEVA L G , LU Z S , et al . Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: Sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279.
|
40 |
LI Shijie , HUANG Hongyu , YANG Xixian , et al . Hydrophilic substance assisted low temperature LiOH·H2O based composite thermochemical materials for thermal energy storage[J]. Applied Thermal Engineering, 2018, 128: 706-711.
|
41 |
LIU Hongzhi , Katsunori NAGANO , Junya TOGAWA . A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200.
|
42 |
RAMMELBERG H U , OSTERLAND T , PRIEHS B , et al . Thermochemical heat storage materials-performance of mixed salt hydrates[J]. Solar Energy, 2016, 136: 571-589.
|
43 |
POSERN K , KAPS C H . Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2 [J]. Thermochimica Acta, 2010, 502(1/2): 73-76.
|
44 |
Kathrin KORHAMMER , Mona-Maria DRUSKE , Armand FOPAH-LELE , et al . Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472.
|