1 |
王涛, 闫君, 赵长颖. 基于CaO/Ca(OH)2热化学储热材料的造粒研究[J]. 工程热物理学报, 2020, 41(8): 2013-2019.
|
|
WANG T, YAN J, ZHAO C Y. Investigation of granular composite based on CaO/Ca(OH)2 thermochemical energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(8): 2013-2019.
|
2 |
HAN R, GAO J H, WEI S Y, et al. Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage[J]. Applied Energy, 2018, 231: 412-422.
|
3 |
KHOSA A A, ZHAO C Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica[J]. Solar Energy, 2019, 188: 619-630.
|
4 |
XIA B Q, PAN Z H, YAN J, et al. Mesoscopic exploration on mass transfer in porous thermochemical heat storage materials[J]. International Journal of Heat and Mass Transfer, 2019, 135: 52-61.
|
5 |
KHOSA A A, XU T X, XIA B Q, et al. Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system—A review[J]. Solar Energy, 2019, 193: 618-636.
|
6 |
YUAN Y, LI Y J, ZHAO J L. Development on thermochemical energy storage based on CaO-based materials: A review[J]. Sustainability, 2018, 10(8): doi: 10.3990/su10082660.
|
7 |
FELDERHOFF M, URBANCZYK R, PEIL S. Thermochemical heat storage for high temperature applications—A review[J]. Green, 2013, 3(2): doi: 10.1515/green-2013-0011.
|
8 |
CHAUVY R, MEUNIER N, THOMAS D, et al. Selecting emerging CO2 utilization products for short-to mid-term deployment[J]. Applied Energy, 2019, 236: 662-680.
|
9 |
HALMANN M, STEINFELD A. Reforming of blast furnace gas with methane, steam, and lime for syngas production and CO2Capture: A thermodynamic study[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(1): 7-12.
|
10 |
SUN H, LI Y J, BIAN Z G, et al. Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO3 cycles[J]. Energy Conversion and Management, 2019, 197: doi: 10.1016/j.enconman.2019.111885.
|
11 |
SARRION B, VALVERDE J M, PEREJON A, et al. On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power[J]. Energy Technology, 2016, 4(8): 1013-1019.
|
12 |
BENITEZ-GUERRERO M, SARRION B, PEREJON A, et al. Large-scale high-temperature solar energy storage using natural minerals[J]. Solar Energy Materials and Solar Cells, 2017, 168: 14-21.
|
13 |
BENITEZ-GUERRERO M, VALVERDE J M, SANCHEZ-JIMENEZ P E, et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants[J]. Solar Energy, 2017, 153: 188-199.
|
14 |
SARRIÓN B, PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, et al. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J]. Journal of CO2 Utilization, 2018, 28: 374-384.
|
15 |
TENG L, XUAN Y M, DA Y, et al. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845.
|
16 |
SÁNCHEZ JIMÉNEZ P E, PEREJÓN A, BENÍTEZ GUERRERO M, et al. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants[J]. Applied Energy, 2019, 235: 543-552.
|
17 |
VALVERDE J M, SANCHEZ-JIMENEZ P E, PEREZ-MAQUEDA L A. High and stable CO2 capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and recarbonation synergy[J]. Fuel, 2014, 123: 79-85.
|
18 |
CHRISSAFIS K. Multicyclic study on the carbonation of CaO using different limestones[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 525-529.
|
19 |
SUN H, LI Y J, YAN X Y, et al. Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure[J]. Applied Energy,2020, 263: doi:10.1016/j.apenergy.2020.114650.
|
20 |
OBERMEIER J, SAKELLARIOU K G, TSONGIDIS N I, et al. Material development and assessment of an energy storage concept based on the CaO-looping process[J]. Solar Energy, 2017, 150: 298-309.
|
21 |
SAKELLARIOU K G, TSONGIDIS N I, KARAGIANNAKIS G, et al. Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple[C]//Cape Town, South Africa. Author(s), 2016: doi: 10.1063/1.4949138.
|
22 |
WANG K, GU F, CLOUGH P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: doi: 10.1016/j.cej.2020.124163.
|
23 |
LIU H, WU S F. Preparation of high sorption durability nano-CaO-ZnO CO2 adsorbent[J]. Energy & Fuels, 2019, 33(8): 7626-7633.
|
24 |
SARRION B, SANCHEZ-JIMENEZ P E, PEREJON A, et al. Pressure effect on the multicycle activity of natural carbonates and a Ca/Zr composite for energy storage of concentrated solar power[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7849-7858.
|
25 |
VALVERDE J M, BAREA-LÓPEZ M, PEREJÓN A, et al. Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power[J]. Energy & Fuels, 2017, 31(4): 4226-4236.
|
26 |
CHEN X Y, JIN X G, LIU Z M, et al. Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping[J]. Energy, 2018, 155: 128-138.
|
27 |
SUN H, LI Y J, YAN X Y, et al. CaO/CaCO3 thermochemical heat storage performance of CaO-based micrometre-sized tubular composite[J]. Energy Conversion and Management, 2020, 222: doi: 10.1016/j.enconman.2020.113222.
|
28 |
AIHARA M, NAGAI T, MATSUSHITA J, et al. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied Energy, 2001, 69(3): 225-238.
|