储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 1-8.doi: 10.19799/j.cnki.2095-4239.2021.0281

• 储能材料与器件 • 上一篇    下一篇

TiO2改性的CaCO3热化学储热的反应性能

徐钿昕(), 田希坤, 闫君, 叶强, 赵长颖()   

  1. 上海交通大学工程热物理研究所,上海 200240
  • 收稿日期:2021-06-22 修回日期:2021-07-23 出版日期:2022-01-05 发布日期:2022-01-10
  • 通讯作者: 赵长颖 E-mail:xutianxin@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
  • 作者简介:徐钿昕(1996—),女,硕士研究生,研究方向为碳酸钙热化学储热,E-mail:xutianxin@sjtu.edu.cn|赵长颖,教授,研究方向为高效热能储存、微纳尺度热辐射等,E-mail:changying.zhao@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(52090063);国家自然科学基金创新研究群体项目(51521004)

Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping

Tianxin XU(), Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO()   

  1. Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-06-22 Revised:2021-07-23 Online:2022-01-05 Published:2022-01-10
  • Contact: Changying ZHAO E-mail:xutianxin@sjtu.edu.cn;changying.zhao@sjtu.edu.cn

摘要:

CaCO3/CaO热化学储热体系在清洁能源发电领域具有广阔的应用前景,有助于尽早实现碳达峰、碳中和。本文通过物理混合法制备了掺杂TiO2的CaCO3/CaO复合储热材料,系统研究了TiO2掺杂对CaCO3/CaO循环稳定性和储/放热过程中反应性能的影响。实验结果表明:在掺杂摩尔比为100∶2.5(Ca∶Ti)时,复合材料展现出了最佳的循环稳定性,15次循环后的转换率为对照组的1.65倍。表征结果显示,最佳掺杂比例的CaCO3-TiO2复合储热材料具有更小的粒径和更发达的孔隙,因而在循环过程中具备更好的抗烧结能力。在碳酸化放热过程中,CaCO3-TiO2-2.5在高温区(750 ℃和800 ℃)有更高的反应转换率和放热/储热焓值比例,但由于复合材料中CaCO3的含量下降,其储热、放热的焓值有所下降。此外,在等温储热分解过程中,N2气氛下TiO2掺杂可提升反应速率、减少反应时间;CO2气氛下TiO2掺杂可降低起始分解温度,促使反应更早开始与结束。而在非等温储热过程中(10 ℃/min),CO2气氛下TiO2掺杂可将纯CaCO3的起始分解温度从897.16 ℃降至870.92 ℃。综上,TiO2改性对CaCO3/CaO储热技术的实际应用具有深远意义。

关键词: CaCO3热化学储热, TiO2改性, 循环稳定性, 碳酸化放热, 分解过程

Abstract:

The CaCO3/CaO thermochemical energy storage system is promising in the field of clean energy power generation because it helps to peak carbon dioxide emissions and achieve carbon neutrality as soon as possible. In this study, CaCO3/CaO composite heat storage materials doped with TiO2 were prepared by employing the physical mixing method. The effects of TiO2 doping on the cyclic stability and the reaction performance in the exothermic and endothermic processes were then systematically investigated. The composite exhibited the best cyclic stability at a molar doping ratio of 100∶2.5 (Ca∶Ti). Its conversion rate was 1.65 times that of the control group after 15 cycles. Characterization showed that the CaCO3-TiO2 composite heat storage material with the best doping ratio had a smaller particle size and more developed pores, leading to a better anti-sintering ability in the cycle process. In the exothermic process of carbonation, CaCO3-TiO2-2.5 illustrated higher reaction conversion rate and thermal release/storage enthalpy ratio at a high temperature range (i.e., 750 ℃. and 800 ℃). However, its enthalpies in the exothermic and endothermic processes decreased due to the low CaCO3 content in the composite material. During the isothermal decarbonation process, the TiO2 doping increases the reaction rate and reduces the reaction time in the N2 atmosphere, and decreases the initial decarbonation temperature and promotes earlier reaction in the CO2 atmosphere. In contrast, during the non-isothermal decarbonation process (10 ℃/min), the TiO2 doping reduces the initial decarbonation temperature of the pure CaCO3 from 897.16 ℃ to 870.92 ℃ in the CO2 atmosphere. The TiO2 modification is generally of far-reaching significance for the practical application of the CaCO3/CaO thermal storage technology.

Key words: CaCO3 thermochemical energy storage, TiO2 modification, cyclic stability, exothermic carbonation, decarbonation process

中图分类号: