储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1454-1466.doi: 10.19799/j.cnki.2095-4239.2020.0126
陆贇1(), 梁嘉宁1, 朱用2, 李峥嵘1, 胡冶州1, 陈科1, 王得丽1()
收稿日期:
2020-03-31
修回日期:
2020-04-20
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
王得丽
E-mail:yunlu-hbu@foxmail.com;wangdl81125@hust.edu.cn
作者简介:
陆贇(1993—),男,博士研究生,研究方向为储能材料的设计和构筑,E-mail:基金资助:
Yun LU1(), Jianing LIANG1, Yong ZHU2, Zhengrong LI1, Yezhou HU1, Ke CHEN1, Deli WANG1()
Received:
2020-03-31
Revised:
2020-04-20
Online:
2020-09-05
Published:
2020-09-08
Contact:
Deli WANG
E-mail:yunlu-hbu@foxmail.com;wangdl81125@hust.edu.cn
摘要:
锂硫二次电池具有能量密度高、成本低和环境友好等优点备受科研工作者们的青睐。但是,单质硫和硫化锂固有的低电导率以及中间产物多硫化锂易溶于电解液产生“穿梭效应”,导致活性材料流失的同时,活性位点也发生严重的体积膨胀,最终造成循环过程中容量迅速衰减。近年来,将链状硫片段与具有活性自由基的聚合物在高温下环合形成稳定的有机硫共聚物,被认为是代替单质硫正极、解决传统C/S体系循环稳定性差的有效策略之一。本文回顾了传统碳载硫(C/S)锂硫电池的反应机理和现阶段存在的问题,综述了腈基、不饱和烃基、硫醇基和小分子有机硫电极的制备方法,储锂机制和近年来的研究进展,分别列举了作为锂硫电池正极的优/劣势,并从科学的角度提出了解决策略和发展方向。综合分析表明,有机物衍生锂硫电池正极利用其“主链导电,侧链储能”的特性,能有效地改善长链多硫化锂溶于电解液所产生的“穿梭效应”,利用高温下不饱和键断裂环硫的策略,将整个/部分活性硫片段整合到正极材料中,有望在实现高硫载量的同时获得高循环稳定性。
中图分类号:
陆贇, 梁嘉宁, 朱用, 李峥嵘, 胡冶州, 陈科, 王得丽. 有机物衍生的锂硫电池正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1454-1466.
Yun LU, Jianing LIANG, Yong ZHU, Zhengrong LI, Yezhou HU, Ke CHEN, Deli WANG. Recent progress in organics derived cathode materials for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1454-1466.
1 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
2 | CAO Y, LI M, LU J, et al. Bridging the academic and industrial metrics for next-generation practical batteries[J]. Nat. Nanotechnol., 2019, 14(3): 200-207. |
3 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015, 7(1): 19-29. |
4 | SHANG C, CAO L, YANG M, et al. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries[J]. Energy Storage Mater., 2019, 18: 375-381. |
5 | LU Y Q, WU Y J, SHENG T, et al. Novel sulfur host composed of cobalt and porous graphitic carbon derived from mofs for the high-performance Li-S battery[J]. ACS Appl. Mater. Interfaces, 2018, 10(16): 13499-13508. |
6 | LI G, LEI W, LUO D, et al. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(8): doi: 10.1002/aenm.201702381. |
7 |
CHEN W J, LI B Q, ZHAO C X, et al. Electrolyte regulation towards stable lithium metal anode in lithium-sulfur batteries with sulfurized polyacrylonitrile cathode[J]. Angew. Chem, Int. Ed., doi: 10.1002/ange.201912701.
doi: 10.1002/ange.201912701 |
8 | LI X, BANIS M, LUSHINGTON A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation[J]. Nat. Commun., 2018, 9(1): 4509-4519. |
9 | LI G, WANG X, SEO M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nat. Commun., 2018, 9(1): 705-715. |
10 | YUAN H, ZHANG W, WANG J G, et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 1-9. |
11 | 袁艳, 郑东东, 方钊, 等. 锂硫电池硫正极技术研究进展[J]. 储能科学与技术, 2018, 7(4): 618-630. |
YUAN Y, ZHENG D, FANG Z, et al. The research progress of Li-S cathode technologies[J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. | |
12 | ZHONG Y, XIA X, DENG S, et al. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(1): doi:10.1002/aenm.201701110. |
13 | LIU D, ZHANG C, ZHOU G, et al. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): doi: 10.1002/advs.201700270. |
14 | LIU S, LI J, YAN X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(12): doi: 10.1002/adma.201706895. |
15 | 闻雷, 梁骥, 石颖, 等. 柔性锂硫电池的材料设计与实现[J]. 储能科学与技术, 2018, 7(3): 465-470. |
WEN L, LIANG J, SHI Y, et al. The design and achievemrnt of flexible lithium sulfur battery[J]. Energy Storage Science and Technology, 2018, 7(3): 465-470. | |
16 | YAMIN H, GORENSHTEIN A, PENCINER J, et al. Lithium sulfur battery oxidation/reduction mechanisms of polysulfides in THF solutions[J]. J. Electrochem. Soc., 1988, 135(5): 1045-1048. |
17 | KONG L, CHEN X, LI B Q, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(2): doi: 10.1002/adma.201705219. |
18 | GUEON D, HWANG J T, YANG S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1): 226-233. |
19 | PANG Q, SHYAMSUNDER A, NARAYANAN B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries[J]. Nat. Energy, 2018, 3(9): 783-791. |
20 | 胡策军, 杨积瑾, 王航超, 等. 锂硫电池安全性问题现状及未来发展态势[J]. 储能科学与技术, 2018, 7(6): 1082-1093. |
HU C, YANG J, WANG H, et al. The safety of Li-S batteries in current situation and future development[J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. | |
21 | 张辰, 刘东海, 吕伟, 等. 高体积能量密度锂硫电池的构建材料和电极[J]. 储能科学与技术, 2017, 6(3): 550-556. |
ZHANG C, LIU D, LYU W, et al. The construction of high volume energy density lithium sulfur battery[J]. Energy Storage Science and Technology, 2017, 6(3): 550-556. | |
22 | LIU Y, WANG W, WANG A, et al. A polysulfide reduction accelerator—NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(42): 22120-22124. |
23 | LI G, LEI W, LUO D, et al. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries[J]. Energy Environ. Sci., 2018, 11(9): 2372-2381. |
24 | 谷穗, 靳俊, 卢洋, 等. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6(5): 1026-1040. |
GU S, JIN J, LU Y, et al. The shuttle effects and inhibition method of lithium-sulfur battery[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040. | |
25 | WANG L, MENAKATH A, HAN F, et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nature Chem., 2019, 11(9): 789-796. |
26 | WENG G M, YANG B, LIU C Y, et al. Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries[J]. Energy Environ. Sci., 2019, 12(7): 2244-2252. |
27 | TANG J, LIU J, LI C, et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew. Chem, Int. Ed., 2015, 54(2): 588-593. |
28 | HU L, DAI C, LIU H, et al. Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(23): doi: 10.1002/aenm.201800709. |
29 | WANG X, QIAN Y, WANG L, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv. Funct. Mater., 2019: doi: 10.1002/adfm.201902929. |
30 | HU P, HE X, NG M F, et al. Trisulfide-bond acenes for organic batteries[J]. Angew. Chem, Int. Ed., 2019, 58(38): 13513-13521. |
31 | 杨裕生,王维坤,苑克国,等. 锂电池正极材料有机多硫化物的展望[J]. 电池, 2002, S1: 1-5. |
YANG Y, WANG W, YUAN K, et al. The prospect of organic polysulfide as anode material for lithium batteries[J]. Bimonthly Battery, 2002, S1: 1-5. | |
32 | WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Adv. Mater., 2002, 14(13/14): 963-965. |
33 | WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003, 13(6): 487-492. |
34 | FANOUS J, WEGNER M, GRIMMINGER J, et al. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chem. Mater., 2011, 23(22): 5024-5028. |
35 | ZHANG S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies, 2014, 7(7): 4588-4600. |
36 | WEI S, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on pan-sulfur composites[J]. J. Am. Chem. Soc., 2015, 137(37): 12143-12152. |
37 | WANG W, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-2907. |
38 | YU X G, XIE J Y, YANG J, et al. Lithium storage in conductive sulfur-containing polymers[J]. J. Electroanal. Chem., 2004, 573(1): 121-128. |
39 | JIN Z Q, LIU Y G, WANG W K, et al. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy Storage Mater., 2018, 14: 272-278. |
40 | WANG L, HE X, SUN W, et al. Organic polymer material with a multi-electron process redox reaction: Towards ultra-high reversible lithium storage capacity[J]. RSC Adv., 2013, 3(10): 3227-3231. |
41 | CHEN X, PENG L, WANG L, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nat. Commun., 2019, 10(1): 1021-1030. |
42 | CHUNG W J, GRIEBEL J J, KIM E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nat. Chem., 2013, 5(6): 518-524. |
43 | SUN Z, XIAO M, WANG S, et al. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium-sulfur cathode[J]. J. Mater. Chem. A, 2014, 2(24): 9280-9286. |
44 | DIRLAM P T, SIMMONDS A G, SHALLCROSS R C, et al. Improving the charge conductance of elemental sulfur via tandem inverse vulcanization and electropolymerization[J]. ACS Macro Lett., 2015, 4(1): 111-114. |
45 | OSCHMANN B, PARK J, KIM C, et al. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries[J]. Chem. Mater., 2015, 27(20): 7011-7017. |
46 | KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 7278-7288. |
47 | JE S H, HWANG T H, TALAPANENI S N, et al. Rational sulfur cathode design for lithium-sulfur batteries: Sulfur-embedded benzoxazine polymers[J]. ACS Energy Lett., 2016, 1(3): 566-572. |
48 | ZENG S, LI L, YU J, et al. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries[J]. Electrochim. Acta, 2018, 263: 53-59. |
49 | VISCO S J, DEJONGHE L C. Ionic conductivity of organosulfur melts for advanced storage electrodes[J]. J. Electrochem. Soc., 1989, 135(12): 2905-2909. |
50 | LIU M, STEVEN J V, JONGHE L C D. Electrochemical properties of organic disulfide/thiolate redox couples[J]. J. Electrochem. Soc., 1989, 136(9): 2570-2575. |
51 | WU M, CUI Y, BHARGAV A, et al. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries[J]. Angew. Chem., Int. Ed., 2016, 55(34): 10027-10031. |
52 | WU M, BHARGAV A, CUI Y, et al. Highly reversible diphenyl trisulfide catholyte for rechargeable lithium batteries[J]. ACS Energy Lett., 2016, 1(6): 1221-1226. |
53 | WANG D Y, GUO W, FU Y. Organosulfides: An emerging class of cathode materials for rechargeable lithium batteries[J]. ACC. Chem. Res., 2019, 52(8): 2290-2300. |
54 | BHARGAV A, MA Y, SHASHIKALA K, et al. The unique chemistry of thiuram polysulfides enables energy dense lithium batteries[J]. J. Mater. Chem. A, 2017, 5(47): 25005-25013. |
55 | PREEFER M B, OSCHMANN B, HAWKER C J, et al. High sulfur content material with stable cycling in lithium-sulfur batteries[J]. Angew. Chem., Int. Ed., 2017, 129(47): 15314-15318. |
56 | WU T, JING M, YANG L, et al. Controllable chain-length for covalent sulfur-carbon materials enabling stable and high-capacity sodium storage[J]. Adv. Energy Mater., 2019, 9(9): doi: 10.1002/aenm.201803478. |
57 | WU T, JING M, TIAN Y, et al. Surface-driven energy storage behavior of dual-heteroatoms functionalized carbon material[J]. Adv. Funct. Mater., 2019, 29(17): doi: 10.1002/adfm.201900941. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[8] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[9] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[10] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[11] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[12] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[13] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[14] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[15] | 季洪祥, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.8.1—2021.9.30)[J]. 储能科学与技术, 2021, 10(6): 2411-2427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||