储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1454-1466.doi: 10.19799/j.cnki.2095-4239.2020.0126

• 储能材料与器件 • 上一篇    下一篇

有机物衍生的锂硫电池正极材料研究进展

陆贇1(), 梁嘉宁1, 朱用2, 李峥嵘1, 胡冶州1, 陈科1, 王得丽1()   

  1. 1.华中科技大学化学与化工学院能量转化与储存材料化学教育部重点实验室,湖北 武汉 430074
    2.南通金通储能动力新材料有限公司,江苏 南通 226000
  • 收稿日期:2020-03-31 修回日期:2020-04-20 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 王得丽 E-mail:yunlu-hbu@foxmail.com;wangdl81125@hust.edu.cn
  • 作者简介:陆贇(1993—),男,博士研究生,研究方向为储能材料的设计和构筑,E-mail:yunlu-hbu@foxmail.com
  • 基金资助:
    国家自然科学基金(91963109);华中科技大学创新研究基金(2017KFYXJJ164)

Recent progress in organics derived cathode materials for lithium sulfur batteries

Yun LU1(), Jianing LIANG1, Yong ZHU2, Zhengrong LI1, Yezhou HU1, Ke CHEN1, Deli WANG1()   

  1. 1.Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology,Wuhan 430074, Hubei, China
    2.Nantong Jintong Energy Storage Power New Materials Co. Ltd. , Nantong 226000, Jiangsu, China
  • Received:2020-03-31 Revised:2020-04-20 Online:2020-09-05 Published:2020-09-08
  • Contact: Deli WANG E-mail:yunlu-hbu@foxmail.com;wangdl81125@hust.edu.cn

摘要:

锂硫二次电池具有能量密度高、成本低和环境友好等优点备受科研工作者们的青睐。但是,单质硫和硫化锂固有的低电导率以及中间产物多硫化锂易溶于电解液产生“穿梭效应”,导致活性材料流失的同时,活性位点也发生严重的体积膨胀,最终造成循环过程中容量迅速衰减。近年来,将链状硫片段与具有活性自由基的聚合物在高温下环合形成稳定的有机硫共聚物,被认为是代替单质硫正极、解决传统C/S体系循环稳定性差的有效策略之一。本文回顾了传统碳载硫(C/S)锂硫电池的反应机理和现阶段存在的问题,综述了腈基、不饱和烃基、硫醇基和小分子有机硫电极的制备方法,储锂机制和近年来的研究进展,分别列举了作为锂硫电池正极的优/劣势,并从科学的角度提出了解决策略和发展方向。综合分析表明,有机物衍生锂硫电池正极利用其“主链导电,侧链储能”的特性,能有效地改善长链多硫化锂溶于电解液所产生的“穿梭效应”,利用高温下不饱和键断裂环硫的策略,将整个/部分活性硫片段整合到正极材料中,有望在实现高硫载量的同时获得高循环稳定性。

关键词: 锂硫电池, 正极材料, 有机硫聚合物, 高循环稳定性

Abstract:

Lithium-sulfur (Li-S) batteries have attracted tremendous attention due to their high energy density, low cost, and environmental friendliness. However, the integration of intrinsic low conductivity (S/Li2S) and shuttle effects (polysulfides) may confine the utilization of active sulfur and cause serious volume expansion of active sites, therefore leading to a rapid capacity decrease during long-term cycles. In recent years, some publications have suggested that elemental sulfur could be fused at high temperature to form linear chain sulfur fragments and subsequently form organic sulfur copolymers via high temperature cyclization, which is considered an effective strategy to cope with the poor cyclic stability of the traditional Li-S system. In this review, first, we examine the reaction mechanisms and shortcomings of traditional Li-S batteries. Then, we review the synthesis methods, lithium storage mechanism, research progress of various active groups (nitrile, unsaturated hydrocarbon, thiol group, and micro-molecule organosulfide) and molten sulfur, list the dis/advantages of organosulfur polymer systems, and suggest strategies and outlooks according to scientific views. In summary, organic sulfur copolymers can efficiently reduce the shuttle effects of traditional C/S batteries, due to the whole/partial active sulfur fragment integrated into the cathode. Such organic sulfur copolymers may simultaneously achieve high sulfur loading and long cycling stability.

Key words: organosulfur polymers, cathode materials, lithium-sulfur batteries, long cycling stability

中图分类号: