1 |
BROCKWAY P E, OWEN A, BRAND-CORREA L I, et al. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nature Energy, 2019, 4: 612-621.
|
2 |
KING L C, van den BERGH J C J M. Implications of net energy-return-on-investment for a low-carbon energy transition[J]. Nature Energy, 2018, 3: 334-340.
|
3 |
冷光辉, 蓝志鹏, 葛志伟, 等. 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130.
|
|
LENG Guanghui, LAN Zhipeng, GE Zhiwei, et al. Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130.
|
4 |
BENITEZ-GUERRERO M, VALVERDE J M, PEREJON A, et al. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J]. Applied Energy, 2018, 210: 108-116.
|
5 |
ELOUALI A, KOUSKSOU T, RHAFIKI T EL, et al. Physical models for packed bed: Sensible heat storage systems[J]. Journal of Energy Storage, 2019, 23: 69-78.
|
6 |
NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
|
7 |
QIU L, OUYANG Y, FENG Y, et al. Review on micro/nano phase change materials for solar thermal applications[J]. Renewable Energy, 2019, 140: 513-538.
|
8 |
JARIMI H, AYDIN D, YANAN Z, et al. Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery[J]. International Journal of Low-Carbon Technologies, 2018, 14: 44-69.
|
9 |
LIN Y, ALVA G, FANG G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708.
|
10 |
LI C, LI Q, DING Y L. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 37-388.
|
11 |
PENG H, ZHANG D, LING X, et al. n-Alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32: 7262-7293.
|
12 |
KRESE G, KOZEL J R, BUTAL A V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy Buildings, 2018, 164: 239-253.
|
13 |
苗琪, 张叶龙, 谈玲华, 等. 矿物基化学吸附储热技术的研究进展[J]. 化工进展, 2020, 39(4): 1308-1320.
|
|
MIAO Qi, ZHANG Yelong, TAN Linghua, et al. Research progress of mineral-based chemical adsorption heat storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1308-1320.
|
14 |
ALVA G, LIN Y, FANG G. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-478.
|
15 |
SALUNKHE P B, JAYA K D. Investigations on latent heat storage materials for solar water and space heating applications[J]. J. Energy Storage, 2017, 12: 243-260.
|
16 |
MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 532-545.
|
17 |
IBRAHIM N I, AL-SULAIMAN F A, ANI F N. Solar absorption systems with integrated absorption energy storage-A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610.
|
18 |
YAN T S, LI T X, XU J X, et al. Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage[J]. Applied Thermal Engineering, 2020, 166: 114655.
|
19 |
GORDEEVA L G, ARISTOV Y I. Adsorptive heat storage and amplification: New cycles and adsorbents[J]. Energy, 2019, 167: 440-453.
|
20 |
DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68.
|
21 |
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16.
|
22 |
RICHTER M, HABERMANN E M, SIEBECKE L, et al. A systematic screening of salt hydrates as materials for a thermochemical heat transformer[J]. Thermochim Acta, 2018, 659: 136.
|
23 |
ZHANG Y N, WANG R Z. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369.
|
24 |
RISTI A, LOGAR N Z. New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage: Determination of structural properties[J]. Nanomaterials, 2019, 9: 27-33.
|
25 |
YU N, WANG R Z, LU Z, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670.
|
26 |
ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249.
|
27 |
GAEINI M, ROUWS A L, SALARI J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage[J]. Applied Energy, 2018, 212: 1165-1177.
|
28 |
CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240.
|
29 |
MAHON D, HENSHALL P, CLAUDIO G, et al. Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage[J]. Renewable Energy, 2020, 145: 1799-1807.
|
30 |
WANG Q, XIE Y, DING B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13x composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110047.
|
31 |
WHITING G T, GRONDIN D, STOSIC D, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials and Solar Cells, 2014, 128: 289-295.
|
32 |
FUMEY B, WEBER R, BALDINI L. Sorption based long-term thermal energy storage-Process classification and analysis of performance limitations: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 57-74.
|
33 |
YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39: 489-514.
|
34 |
KERKES H, METTE B, BERTSCH F, et al. Development of a thermochemical energy storage for solar thermal applications[C]//ISES Solar World Congress 2011, Kassel, Germany.
|
35 |
ARMAND F L, FRÉDÉRIC K, OLIVER O, et al. Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion and Management, 2015, 106: 1327-1344.
|
36 |
ZHAO Y J, WANG R Z, LI T X, et al. Investigation of a 10 kW.h sorption heat storage device for effective utilization of low-grade thermal energy[J]. Energy, 2016, 113: 739-747.
|
37 |
SOLÉ A, MARTORELL I, CABEZA L F. State of the art on gas-solid thermochemical energy storage systems and reactors for building applications[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 386-398.
|
38 |
XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109.
|
39 |
LAHMIDI H, MAURAN S, GOETZ V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893.
|
40 |
MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47: 553-563.
|
41 |
VISSCHER K, VELDHUIS J B J. Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system[C]//Proceedings of the Ninth International Building Performance Simulation Association, 2005.
|
42 |
COT-GORES J, CASTELL A, CABEZA L F. Thermochemical energy storage and conversión: A-state-of-the-art review of the experimental research practical conditions[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 5207-5224.
|
43 |
AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334.
|
44 |
LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200.
|
45 |
LASS-SEYOUM A, BLICKER M, BOROZDENKO D, et al. Transfer of laboratory results on closed sorption thermochemical energy storage to a large-scale technical system[J]. Energy Procedia, 2012, 30: 310-320.
|