储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1737-1746.doi: 10.19799/j.cnki.2095-4239.2020.0187
收稿日期:
2020-05-22
修回日期:
2020-06-08
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
吴文娟
E-mail:1252885249@qq.com;wenjuanwu@njfu.edu.cn
作者简介:
吴彩文(1996—),女,硕士研究生,研究方向为天然高分子的改性与应用,E-mail:基金资助:
Caiwen WU(), Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU()
Received:
2020-05-22
Revised:
2020-06-08
Online:
2020-11-05
Published:
2020-10-28
Contact:
Wenjuan WU
E-mail:1252885249@qq.com;wenjuanwu@njfu.edu.cn
摘要:
木质素作为一种储量丰富、廉价可再生的生物资源,已被广泛应用于工业领域并取得一定的进展,但在储能领域的应用还十分有限。为进一步拓宽木质素在储能材料中的应用范围,本文综述了近年来木质素及其衍生物在可充电电池(铅酸蓄电池、锂离子电池)、燃料电池、太阳能电池和超级电容器等高附加值产品领域的研究进展。其中,对不同来源木质素基本性质、特点作了简要介绍,并基于木质素及其衍生物在分子结构上的设计灵活性和多样性,通过直接选用木质素或改性、掺杂一种或多种杂原子制备出助剂、黏结剂、催化剂、电池或超级电容器电极材料等,探讨分析了不同木质素基储能装置的运作机制和表现出的不同差异的电化学性能。结果表明,在能源储存装置中使用木质素,不仅提升了储能装置的循环稳定性、延长了使用寿命,而且降低了生产成本、减轻了化学污染。最后,为进一步提升木质素基储能装置的能量存储和输出效率,对未来木质素基储能材料面临的挑战和可能的发展方向进行了展望。
中图分类号:
吴彩文, 黄丽菁, 邹春阳, 李博文, 吴文娟. 木质素在储能领域中的应用研究进展[J]. 储能科学与技术, 2020, 9(6): 1737-1746.
Caiwen WU, Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU. Research progress of the lignin in application energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746.
1 | XIONG Wenlong, YANG Dongjie, ZHONG Ruisheng, et al. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method[J]. Industrial Crops & Products, 2015, 74: 285-292. |
2 | Dan KAI, TAN Mein Jin, CHEE Pei Lin, et al. ChemInform abstract: towards lignin-based functional materials in a sustainable world[J]. ChemInform, 2016, 18(5): 1175-1200. |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
4 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
5 | GOODENOUGH J B, KIM Youngsik. Challenges for rechargeable Li+ batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
6 | INDRA A, SONG Taeseup, PAIK Ungyu. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Advanced Materials, 2018, 30(39): doi: 10.1002/adma.201705146. |
7 | AHMED S F, KHALID M, RASHMI W. Recent progress in solar thermal energy storage using nanomaterials[J]. Renewable & Sustainable Energy Reviews, 2017, 67(1): 450-460. |
8 | JUNG Hyunsu, PARK Nam Gyu. Perovskite solar cells: from materials to devices[J]. Small, 2015, 11(1): 10-25. |
9 | ESPINOZA-ACOSTA J L, TORRES-CHÁVEZ P I, OLMEDO-MARTÍNEZ J L, et al. Lignin in storage and renewable energy applications: A review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
10 | STRASSBERGER Z, TANASE S, ROTHENBERG G. The pros and cons of lignin valorisation in an integrated biorefinery[J]. RSC Advances, 2014, 4(48): 25310-25318. |
11 | ZHANG Jiubing, GE Yuanyuan, QIN Li, et al. Synthesis of a lignin-based surfactant through amination, sulfonation and acylation[J]. Journal of Dispersion Science and Technology, 2018, 39(8): 1140-1143. |
12 | YANG Dongjie, QIN Xueqing, ZHOU Mingsong, et al. Properties of sodium lignosulfonate as dispersant of coal water slurry[J]. Energy Conversion and Management, 2007, 48(9): 2433-2438. |
13 | ARESKOGH D, LI Jiebing, GELLERSTEDT G. Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis[J]. Biomacromolecules, 2010, 11(4): 904-910. |
14 | ARESKOGH D, HENRIKSSON G. Immobilisation of laccase for polymerisation of commercial lignosulphonates[J]. Process Biochemistry, 2011, 46(5): 1071-1075. |
15 | UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chemical Reviews, 2016, 116(4): 2275-2306. |
16 | NAKAGAME S, CHANDRA R P, KADLA J F. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology and Bioengineering, 2011, 108(3): 538-548. |
17 | 周静, 胡立红, 周永红. 酶解木质素的提取及应用研究进展[J]. 化工新型材料, 2015, 43(4): 245-246. |
ZHOU Jing, HU Lihong, ZHOU Yonghong. Extraction and application of enzymatic lignin[J]. New Chemical Materials, 2015, 43(4): 245-246. | |
18 | VISHTAL A G, KRASLAWSKI A. Challenges in industrial applications of technical lignins[J]. Bioresources, 2011, 6(3): 3547-3568. |
19 | BODEN D P. Comparison of methods for adding expander to lead-acid battery plates — Advantages and disadvantages[J]. Journal of Power Sources, 2003, 133(1): 47-51. |
20 | SAITO K, HIRAI N, SHIOTA M, et al. Reaction between lead oxide and lignin in aqueous solution[J]. Journal of Power Sources, 2003, 124(1): 266-270. |
21 | HIRAI N, KUBO S, MAGARA K. Combined cyclic voltammetry and in situ electrochemical atomic force microscopy on lead electrode in sulfuric acid solution with or without lignosulfonate[J]. Journal of Power Sources, 2008, 191(1): 97-102. |
22 | 张兴, 张祖波, 夏诗忠, 等. 木质素类型及添加量对AGM阀控式铅酸蓄电池负极性能的影响研究[J]. 蓄电池, 2015, 52(4): 190-196. |
ZHANG Xing, ZHANG Zhubo, XIA Shizhong, et al. Research on the influence of lignin type and adding amount on negative performance of AGM valved-type lead-acid battery[J]. Accumulator, 2015, 52(4): 190-196. | |
23 | PAVLOV D, MYRVOLD B O, ROGACHEV T, et al. A new generation of highly efficient expander products and correlation between their chemical composition and the performance of the lead-acid battery[J]. Journal of Power Sources, 2000, 85(1): 79-91. |
24 | MYRVOLD B O, PAVLOV D. Multivariate analysis for characterization of expanders[J]. Journal of Power Sources, 2000, 85(1): 92-101. |
25 | 徐小亮, 徐冬明. 铅炭电池负极板制备工艺探讨[J]. 蓄电池, 2018, 55(3): 119-122. |
XU Xiaoliang, XU Dongming. Preparation technology of lead carbon battery negative plate[J]. Accumulator, 2018, 55(3): 119-122. | |
26 | KUMAR S M, ARUN S, MAYAVAN S. Effect of carbon nanotubes with varying dimensions and properties on the performance of lead acid batteries operating under high rate partial state of charge conditions[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100806. |
27 | ZIMÁKOVÁ J, FRYDA D, VACULIÍK S, et al. Examination of impact of lignosulfonates added to the negative active mass of a lead-acid battery electrode[J]. Journal of Energy Storage, 2018, 18(8): 229-238. |
28 | DENG Da. Li-ion batteries: basics, progress, and challenges[J]. Energy Science & Engineering, 2015. 3(5): 385-418. |
29 | JIANG K, CHEN Zonghai, MENG Xiangbo. CuS and Cu2S as cathode materials for lithium batteries: A review[J]. ChemElectroChem, 2019, 6(11): 2825-2840. |
30 | 王欢, 乔庆东, 李琪. 锂离子电池正极材料现状研究[J]. 电源技术, 2019, 43(11): 1887-1890. |
WANG Huan, QIAO Qingdong, LI Qi. Research on the current situation of anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(11): 1887-1890. | |
31 | GNEDENKOV S V, OPRA D P, SINEBRYUKHOV S L, et al. Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 903-910. |
32 | YU Faqi, LI Yilin, JIA Meng, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: The effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685. |
33 | ZHANG He, JIA Dandan, YANG Zewen, et al. Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode[J]. Carbon, 2017, 122: 547-555. |
34 | Bo Ram LEE, Eun Suok OH. Effect of molecular weight and degree of substitution of a sodium-carboxymethyl cellulose binder on Li4Ti5O12 anodic performance[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2013, 117(9): 4404-4409. |
35 | ZHANG Sheng S, XU Kang, JOW T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1): 226-231. |
36 | LU Huiran, CORNELL A, ALVARADO F, et al. Lignin as a binder material for eco-friendly Li-ion batteries[J]. Materials (Basel, Switzerland), 2016, 9(3): 127-144. |
37 | LUO Chao, DU Leilei, WU Wei. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. |
38 | MA Yue, Chen KAI, Ma JUN. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-Ion batteries[J]. Energy & Environmental Science, 2019, 12(1): 273-280. |
39 | WINSLOW K M, LAUX S J, OWNSEND T G. A review on the growing concern and potential management strategies of waste lithium-ion batteries[J]. Resources Conservation and Recycling, 2018, 129: 263-277. |
40 | 肖琴, 岳勇, 任世杰. 锂离子电池用化学交联型凝胶聚合物电解质的研究进展[J]. 功能高分子学报, 2019, 32(1): 28-44. |
XIAO Qin, YUE Yong, REN Shijie. Progress in the study of chemically crosslinked gel polymer electrolytes for lithium-ion battery[J]. Journal of Functional Polymers, 2019, 32(1): 28-44. | |
41 | ZHU Jiadeng, YAN Chaoyi, ZHANG Xin, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76: doi: 10.1016/j.pecs.2019.100788. |
42 | GONG Shengdong, HUANG Yun, CAO Haijun, et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin[J]. Journal of Power Sources, 2016, 307: 624-633. |
43 | LIU Bo, LI Xing, CAO Haijun. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane[J]. Journal of Solid State Electrochemistry, 2018, 22(3): 807-816. |
44 | BARONCINI E A, STANZIONE J F. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes[J]. International Journal of Biological Macromolecules, 2018, 113: 1041-1051. |
45 | LIMA R B, RAZA R, QIN Haiying, et al. Direct lignin fuel cell for power generation[J]. RSC Advances. 2013, 3(15): 5083-5089. |
46 | SHEWA W A, LALMAN J A, CHAGANTI S R, et al. Electricity production from lignin photocatalytic degradation byproducts[J]. Energy, 2016, 111: 774-784. |
47 | ZHAO Xuebing, ZHU J Y. Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures[J]. ChemSusChem, 2016, 9(2): 197-207. |
48 | LIU Wei, MU Wei, DENG Yulin. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie, 2014, 126(49): 13776-13780. |
49 | LI Yuan, HONG Nanlong. An efficient hole transport material based on PEDOT dispersed with lignosulfonate: Preparation, characterization and performance in polymer solar cells[J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2015, 3(43): 21537-21544. |
50 | WU Ying, WANG Junyi, QIU Xueqing. Highly efficient inverted perovskite solar cells with sulfonated lignin doped PEDOT as hole extract layer[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12377-12383. |
51 | LI Yunda, LIU Tiefeng, QIU Xueqing, et al. Enhancing efficiency and durability of inverted perovskite solar cells with phenol/unsaturated carbon-carbon double bond dual-functionalized poly(3,4-ethylenedioxythiophene) hole extraction layer[J]. ACS Sustainable Chem Eng, 2019, 7(1): 961-968. |
52 | HU Huichao, XU Huimin, WU Junying, et al. Secondary bonds modifying conjugate-blocked linkages of biomass-derived lignin to form electron transfer 3D networks for efficiency exceeding 16% nonfullerene organic solar cells[J]. Advanced Functional Materials, 2020, 30: doi:10.1002/adfm.202001494. |
53 | MA Xiaojing, ELBOHY H, SIGDEL S. Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells[J]. RSC Adv, 2016, 6(14): 11481-11487. |
54 | ZHAO Ying, LIU Yun, TONG Congcong, et al. Flexible lignin-derived electrospun carbon nanofiber mats as a highly efficient and binder-free counter electrode for dye-sensitized solar cells[J]. Journal of Materials Science, 2018, 53(10): 7637-7647. |
55 | WANG Nan, FAN Hai, AI Shiyun. Lignin templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration[J]. Chemical Engineering Journal, 2015, 260: 785-790. |
56 | Myohwa KO, PHAM L T M, Young Jin SA, et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell[J]. Nature Communications, 2019, 10(1): 5123-5133. |
57 | WANG Huanlei, XU Zhanwei, KOHANDEHGHAN A. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano, 2013, 7(6): 5131-5141. |
58 | BABEL K, JUREWICZ K, JANASIAK D. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials[J]. Carbon, 2012, 50(14): 5017-5026. |
59 | HAO Zhiqiang, CAO Jingpei, DANG Yali, et al. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4037-4046. |
60 | YANG Jingqi, WANG Yixiang, LUO Jingli, et al. Facile preparation of self-standing hierarchical porous nitrogen-doped carbon fibers for supercapacitors from plant protein-lignin electrospun fibers[J]. ACS Omega, 2018, 3(4): 4647-4656. |
61 | LIU Fangyan, WANG Zixing, ZHANG Haitao, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149: 105-116. |
62 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
WANG Shuai, GAN Linhuo, LÜ Li. Progress in preparation and application of lignin-based mesoporous carbon materials[J]. Progress in Chemical Industry, 2019, 38(8): 3720-3729. | |
63 | LI Hui, YUAN Du, TANG Chunhua, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
64 | CHEN Weimin, WANG Xin, FEIZBAKHSHAN M, et al. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 540: 524-534. |
65 | SUN Qining, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry, 2016, 18: 5015-5024. |
66 | YOU Xiangyu, KODA K, YAMADA T. Preparation of electrode for electric double layer capacitor from electrospun lignin fibers[J]. Holzforschung, 2015, 69(9): 1097-1106. |
67 | YOU Xiangyu, DUAN Junlei, KODA K. Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers[J]. Holzforschung, 2016, 70(7): 661-671. |
68 | YOU Xiangyu, KODA K, YAMADA T. Preparation of high-performance internal tandem electric double-layer capacitors (IT-EDLCs) from melt-spun lignin fibers[J]. Journal of Wood Chemistry and Technology, 2016, 36(6): 418-431. |
69 | 呼延永江, 高帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38. |
HUYAN Yongjiang, GAO Fan. Effect of graphene doping on the electrochemical properties of lignin-based carbon nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38. | |
70 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
71 | 李一举, 赵婧, 杨赛男, 等. 碳和碳基复合材料的制备及其在超级电容器中的应用[J]. 黑龙江大学自然科学学报, 2018, 35(4): 433-452. |
LI Yiju, ZHAO Jing, YANG Sainan, et al. Preparation of carbon and carbon-based composites and their applications in supercapacitors[J]. Proceedings of the Heilongjiang University, 2018, 35(4): 433-452. | |
72 | XIONG Changlun, ZHONG Wenbin, ZOU Yubo, et al. Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes[J]. Electrochimica Acta, 2016, 211: 941-949. |
73 | YI Chenqi, ZOU Jianpeng, YANG Hongzhi, et al. Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1980-2001. |
74 | MILCZAREK G, INGANÄS O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks[J]. Science, 2012, 335(6075): 1468-1471. |
75 | XIAO Dingshu, REN Yaqi, CHEN Zhenxuan, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials[J]. Electrochimica Acta, 2019, 300: 193-201. |
76 | YOUE Won Jae, KIM Seokju, Soo Min LEE, et al. MnO2 -deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors[J]. International Journal of Biological Macromolecules, 2018, 112. |
77 | ZHOU Bingjie, WEI Liu, GONG Yutao, et al. High-performance pseudocapacitors from kraft lignin modified active carbon[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134640. |
78 | WANG Linping, SUN Yuxiang. Preparation of iron oxide particle-decorated lignin-based carbon nanofibers as electrode material for pseudocapacitor[J]. Journal of Wood Chemistry and Technology, 2017, 37(6): 423-432. |
79 | YU Boming, GELE A, WANG L. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118: 478-484. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[4] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[5] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[6] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[7] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[8] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[9] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[10] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[11] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[12] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[13] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[14] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[15] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||