储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 9-18.doi: 10.19799/j.cnki.2095-4239.2021.0355

• 储能材料与器件 • 上一篇    下一篇

In元素对Sn-Bi-Zn传热储热合金高温容器相容性的影响

王青萌1(), 刘志1, 程晓敏1,2(), 程千驹1, 吕泽安1   

  1. 1.黄冈师范学院机电与汽车工程学院,湖北 黄冈 438000
    2.武汉理工大学材料科学与工程学院,湖北 武汉 430070
  • 收稿日期:2021-07-16 修回日期:2021-09-15 出版日期:2022-01-05 发布日期:2022-01-10
  • 通讯作者: 程晓敏 E-mail:wangqingmeng@whut.edu.cn;chengxm@whut.edu.cn
  • 作者简介:王青萌(1990—),男,博士,讲师,研究方向为新能源材料与器件,E-mail: wangqingmeng@whut.edu.cn|程晓敏,教授,材料科学及先进制造技术,E-mail: chengxm@whut.edu.cn
  • 基金资助:
    湖北省中央引导地方科技发展资金“光谷科创大走廊”专项项目(2021BGE023);黄冈市级科技计划一般项目(XQYF2021000055)

Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy

Qingmeng WANG1(), Zhi LIU1, Xiaomin CHENG1,2(), Qianju CHENG1, Zean LYU1   

  1. 1.School of Electromechnaical and Automobile Engineering, Huanggang Normal University, Huanggang 438000, Hubei, China
    2.School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2021-07-16 Revised:2021-09-15 Online:2022-01-05 Published:2022-01-10
  • Contact: Xiaomin CHENG E-mail:wangqingmeng@whut.edu.cn;chengxm@whut.edu.cn

摘要:

合金材料与容器壳体的相容性是影响传热储热系统使用寿命的重要因素之一。本文选用前期开发的Sn-Bi-Zn系传热储热合金,添加In元素进行改性,研究700 ℃下液态合金对20碳钢、304不锈钢、316不锈钢结构材料的腐蚀作用。实验采用恒温全浸泡腐蚀法,通过扫描电子显微镜(FE-SEM)和EDS光谱仪分析腐蚀前后合金基体和容器材料的微观形貌和元素分布,采用差示扫描量热法(DSC)和激光闪光法(LFA)研究了样品腐蚀前后的热物性。腐蚀动力学表明,实验结果符合抛物线规律,扩散系数依次为D(20C)>D(304)>D(316)。腐蚀过程中由于钢片中元素的溶解以及基体合金元素的扩散消耗,使得合金基体的热导率略有增加。机理分析表明,In元素氧化反应的吉布斯自由能比容器材料中元素的小,可在腐蚀界面处形成氧化层,防止容器材料的溶解腐蚀和氧化腐蚀。

关键词: Sn-Bi-Zn-In, 传热储热, 热物理性质, 高温相容性

Abstract:

The compatibility of alloy material and container shell is one of the critical factors affecting the service life of the heat transfer and storage system. This paper modifies a previously developed Sn-Bi-Zn heat transfer and storage alloy by adding In element to study the corrosion effect of liquid alloy on 20 carbon steel, 304 stainless steel, and 316 stainless steel at 700 ℃. The experiment adopts the constant temperature full immersion corrosion method. It analyzes the micromorphology and element distribution of alloy matrix and container material before and after corrosion by scanning electron microscope and energy dispersive spectrometer. Differential scanning calorimetry and flash thermal conductivity were used to study the thermal properties of the samples before and after corrosion. The corrosion kinetics shows that the experimental results conform to the parabolic law, and the diffusion coefficient is in the order of D(20C)>D(304)>D(316). The thermal conductivity of the alloy matrix increases slightly during the corrosion process due to the elements' dissolution in the steel sheet and the diffusion and consumption of the matrix alloy elements. Mechanism analysis shows that the Gibbs free energy of the oxidation reaction of In element is smaller than that of the container material. Therefore, an oxide layer can be formed at the corrosion interface to prevent dissolution and oxidation corrosion of the container material.

Key words: Sn-Bi-Zn-In, heat transfer and storage, thermophysical properties, high temperature compatibility

中图分类号: