储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 9-18.doi: 10.19799/j.cnki.2095-4239.2021.0355
王青萌1(), 刘志1, 程晓敏1,2(), 程千驹1, 吕泽安1
收稿日期:
2021-07-16
修回日期:
2021-09-15
出版日期:
2022-01-05
发布日期:
2022-01-10
通讯作者:
程晓敏
E-mail:wangqingmeng@whut.edu.cn;chengxm@whut.edu.cn
作者简介:
王青萌(1990—),男,博士,讲师,研究方向为新能源材料与器件,E-mail: 基金资助:
Qingmeng WANG1(), Zhi LIU1, Xiaomin CHENG1,2(), Qianju CHENG1, Zean LYU1
Received:
2021-07-16
Revised:
2021-09-15
Online:
2022-01-05
Published:
2022-01-10
Contact:
Xiaomin CHENG
E-mail:wangqingmeng@whut.edu.cn;chengxm@whut.edu.cn
摘要:
合金材料与容器壳体的相容性是影响传热储热系统使用寿命的重要因素之一。本文选用前期开发的Sn-Bi-Zn系传热储热合金,添加In元素进行改性,研究700 ℃下液态合金对20碳钢、304不锈钢、316不锈钢结构材料的腐蚀作用。实验采用恒温全浸泡腐蚀法,通过扫描电子显微镜(FE-SEM)和EDS光谱仪分析腐蚀前后合金基体和容器材料的微观形貌和元素分布,采用差示扫描量热法(DSC)和激光闪光法(LFA)研究了样品腐蚀前后的热物性。腐蚀动力学表明,实验结果符合抛物线规律,扩散系数依次为D(20C)>D(304)>D(316)。腐蚀过程中由于钢片中元素的溶解以及基体合金元素的扩散消耗,使得合金基体的热导率略有增加。机理分析表明,In元素氧化反应的吉布斯自由能比容器材料中元素的小,可在腐蚀界面处形成氧化层,防止容器材料的溶解腐蚀和氧化腐蚀。
中图分类号:
王青萌, 刘志, 程晓敏, 程千驹, 吕泽安. In元素对Sn-Bi-Zn传热储热合金高温容器相容性的影响[J]. 储能科学与技术, 2022, 11(1): 9-18.
Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy[J]. Energy Storage Science and Technology, 2022, 11(1): 9-18.
表3
腐蚀前后合金在不同温度下的比热容值"
合金样品 | 数值 | 温度/℃ | |||||
---|---|---|---|---|---|---|---|
60 | 80 | 100 | 150 | 170 | 190 | ||
腐蚀前 Sn-50Bi-2Zn | 比热容 /[J/(g·K)] | 0.19 | 0.21 | 0.18 | 0.21 | 0.22 | 0.23 |
平均值 /[J/(g·K)] | 0.19 | 0.22 | |||||
腐蚀前 (Sn-50Bi-2Zn)-7In | 比热容 /[J/(g·K)] | 0.31 | 0.32 | 0.33 | 0.36 | 0.34 | 0.35 |
平均值 /[J/(g·K)] | 0.32 | 0.35 | |||||
腐蚀后 Sn-50Bi-2Zn | 比热容 /[J/(g·K)] | 0.23 | 0.24 | 0.25 | 0.25 | 0.26 | 0.27 |
平均值 /[J/(g·K)] | 0.24 | 0.26 | |||||
腐蚀后 (Sn-50Bi-2Zn)-7In | 比热容 /[J/(g·K)] | 0.34 | 0.36 | 0.35 | 0.36 | 0.38 | 0.37 |
平均值 /[J/(g·K)] | 0.35 | 0.37 |
表10
实验中中元素氧化反应的吉布斯自由能[25]"
氧化反应 | ?G?/(J/mol) | |||
---|---|---|---|---|
298 K | 400 K | 600 K | 800 K | |
Sn→SnO | -302.61 | -309.06 | -325.03 | -344.30 |
Sn→SnO2 | -596.33 | -602.56 | -619.43 | -641.61 |
Bi→Bi2O3 | -615.886 | -633.08 | -675.29 | -725.87 |
Zn→ZnO | -361.08 | -366.18 | -379.44 | -396.05 |
Ni→NiO | -426.93 | -455.53 | -469.45 | -486.13 |
Fe→Fe2O3 | -851.58 | -862.21 | -891.82 | -930.91 |
Cr→Cr2O3 | -1153.88 | -1163.84 | -1191.52 | -1227.35 |
In→In2O3 | -958.10 | -970.75 | -1003.66 | -1044.83 |
1 | MEHRALI M, TEN ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: doi: 10.1016/j.cej.2020.126624. |
2 | YANG R T, LI D, SALAZAR S L. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material[J]. Solar Energy Materials and Solar Cells, 2021, 219: doi: 10.1016/j.solmat.2020.110792. |
3 | LI C C, WANG M F, XIE B S, et al. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage[J]. Renewable Energy, 2020, 147: 265-274. |
4 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
5 | 杨岳澔, 程晓敏, 李丹, 等. 硬脂酸/改性碳纳米管复合相变储热材料性能[J]. 储能科学与技术, 2019, 8(4): 759-763. |
YANG Y H, CHENG X M, LI D, et al. Properties of stearic acid/modified carbon nanotube composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. | |
6 | WANG Q M, CHENG X M, LI Y Y, et al. Microstructures and thermal properties of Sn-Bi-Pb-Zn alloys as heat storage and transfer materials[J]. Rare Metals, 2019, 38(4): 350-358. |
7 | GE H S, LI H Y, MEI S F, et al. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area[J]. Renewable & Sustainable Energy Reviews, 2013, 21: 331-346. |
8 | 李元元, 程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术, 2013, 2(3): 189-198. |
LI Y Y, CHENG X M. Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology, 2013, 2(3): 189-198. | |
9 | WANG J M, JIANG Y M, NI Y F, et al. Investigation on static and dynamic corrosion behaviors of thermal energy transfer and storage system materials by molten salts in concentrating solar power plants[J]. Materials and Corrosion, 2019, 70: doi: 10.1002/maco.201810362. |
10 | 李懿德. 太阳能热发电用不锈钢渗铝工艺对其抗腐蚀和疲劳行为的影响[D]. 长沙: 长沙理工大学, 2018. |
LI Y D. The effect of aluminizing process on corrosion resistance and fatigue behavior of stainless steel for solar thermal power generation system[D]. Changsha: Changsha University of Science & Technology, 2018. | |
11 | 张恩耀, 崔珊, 周鹏, 等. 太阳能热发电高温熔盐腐蚀机理及其影响因素[J]. 化工科技, 2021, 29(1): 71-76. |
ZHANG E Y, CUI S, ZHOU P, et al. Corrosion mechanism and influence factors of high temperature molten salt[J]. Science & Technology in Chemical Industry, 2021, 29(1): 71-76. | |
12 | ARGUELLES-OJEDA J L, MORENO-PALMERIN J, SALDAA-ROBLES A, et al. Corrosion behavior of boride diffusion layer on CoCrMo alloy surface[J]. Indian Journal of Engineering and Materials Sciences, 2020, 27(1): 87-95. |
13 | 付沙沙, 马胜强, 马胜超, 等. 液态金属腐蚀研究进展[J]. 中国铸造装备与技术, 2020, 55(4): 34-42. |
FU S S, MA S Q, MA S C, et al. Research progress of liquid metal corrosion[J]. China Foundry Machinery & Technology, 2020, 55(4): 34-42. | |
14 | WINT N, WARREN D J, DEVOOYS A, et al. The Use of chromium and chromium(Ⅲ) oxide PVD coatings to resist the corrosion driven coating delamination of organically coated packaging steel[J]. Journal of The Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc360. |
15 | 鞠娜, 雷玉成, 陈钢, 等. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493. |
JU N, LEI Y C, CHEN G, et al. Corrosion behavior of stainless steel 410 in flowing lead-bismuth eutectic alloy at 550 ℃[J]. Materials Review, 2019, 33(20): 3489-3493. | |
16 | KANG S K, RAMACHANDRAN V. Growt.h kinetics of intermetallic phases at the liquid Sn and solid Ni interface[J]. Scripta Metallurgica, 1980, 14(4):421-424. |
17 | EMMERICH T, SCHROER C. Corrosion in austenitic steels and nickel-based alloys caused by liquid tin at high temperature[J]. Corrosion Science, 2017, 120: 171-183. |
18 | CHEN J J, SONG X P, WANG H, et al. Effect of temperature on corrosion behavior of 304 stainless steel in liquid Sn[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2642-2646. |
19 | SCHROER C, WEDEMEYER O, NOVOTNY J, et al. Selective leaching of nickel and chromium from type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2014, 84(3): 113-124. |
20 | KONDO M, ISHII M, MUROGA T. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn-20Li)[J]. Fusion Engineering & Design, 2015, 98: 2003-2008. |
21 | YUAN J W, ZHANG K, ZHANG X H, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J]. Journal of Alloys & Compounds, 2013, 578(6): 32-36. |
22 | ISHIDA T. The reaction of solid iron with molten tin[J]. Transactions of the Japan Institute of Metals, 1973, 14(1): 37-44. |
23 | SZAKALOS P, PETTERSSON R, HERTZMAN S. An active corrosion mechanism for metal dusting on 304L stainless steel[J]. Corrosion Science, 2002, 44(10): 2253-2270. |
24 | 韩立荣. 金属的腐蚀与防护[J]. 中国金属通报, 2019(1): 230-231. |
HAN L R. Metal corrosion and protection[J]. China Metal Bulletin, 2019(1): 230-231. | |
25 | BÖRNSTEIN L. Thermodynamic properties of inorganic material, Scientific Group Thermodata Europe (SGTE)[M]. Berlin, Springer, 1999, 19A1. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[3] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[4] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[5] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[6] | 刘立君, 宁雅倩, 李晓庆, 刘晓燕. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, (): 1-9. |
[7] | 吴小凌, 周涛, 刘钰照, 杜艳平, 陈会平, 李顺. 基于空气紊流的中空底孔微柱阵列设计及强化散热数值研究[J]. 储能科学与技术, 2022, 11(6): 1980-1987. |
[8] | 张弘, 张阳, 赵耀, 王久林. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[11] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[12] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[13] | 王灿, 马盼, 祝国梁, 魏水淼, 杨植禄, 张志宇. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. |
[14] | 郝佳豪, 越云凯, 张家俊, 杨俊玲, 李晓琼, 宋衍昌, 张振涛. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, (): 1-10. |
[15] | 王为术, 张向薪, 姚紫琨, 甄娟. MgH2 反应器储氢反应速度特性[J]. 储能科学与技术, 2022, 11(5): 1543-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||