储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1919-1933.doi: 10.19799/j.cnki.2095-4239.2022.0204
收稿日期:
2022-04-14
修回日期:
2022-05-07
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
王久林
E-mail:zh120110910080@sjtu.edu.cn;wangjiulin@sjtu.edu.cn
作者简介:
张弘(1999—),女,硕士研究生,主要研究方向为固态锂硫二次电池。E-mail:zh120110910080@sjtu.edu.cn;
基金资助:
ZHANG Hong1(), ZHANG Yang1, ZHAO Yao1, WANG Jiulin1,2()
Received:
2022-04-14
Revised:
2022-05-07
Online:
2022-06-05
Published:
2022-06-13
Contact:
WANG Jiulin
E-mail:zh120110910080@sjtu.edu.cn;wangjiulin@sjtu.edu.cn
摘要:
锂硫电池(Li-S)理论能量密度高,且硫资源在地壳中分布丰富,被认为是最有前途的二次电池之一。传统液态锂硫电池中硫正极经历“固-液-固”转化反应,在充放电过程会产生可溶性多硫化物,引发溶解穿梭效应,导致活性材料损失和循环寿命不足等问题。“固-固”转化反应的硫正极可以避免长链多硫化物的溶解,从根本上解决穿梭问题。本文详细介绍了在硫正极实现“固-固”转化反应的不同策略及研究进展,分别对微孔结构限硫、有机聚合物共价键固硫、有机/无机杂化协同固硫等策略进行了机理探讨、优化方法总结和未来挑战分析。之后阐述了与上述固固转化反应硫正极匹配的固体电解质,并简要介绍了“准固态”转化的研究策略,最后对构建高能量密度锂硫电池提出了展望。
中图分类号:
张弘, 张阳, 赵耀, 王久林. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933.
ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction[J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
3 | LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
4 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
5 | MANTHIRAM A, FU Y Z, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
6 | WILD M, O'NEILL L, ZHANG T, et al. Lithium sulfur batteries, a mechanistic review [J]. Energy & Environmental Science, 2015, 8(12): 3477-3494. |
7 | ZHAO Q, ZHENG J X, ARCHER L. Interphases in lithium-sulfur batteries: Toward deployable devices with competitive energy density and stability[J]. ACS Energy Letters, 2018, 3(9): 2104-2113. |
8 | MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
9 | FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201606823. |
10 | PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201700260. |
11 | LI Z, ZHANG J T, GUAN B Y, et al. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries[J]. Nature Communications, 2016, 7: 13065. |
12 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | |
13 | ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071. |
14 | WANG J L, YANG J, XIE J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502. |
15 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
16 | FANG R P, XU J T, WANG D W. Covalent fixing of sulfur in metal-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(2): 432-471. |
17 | ZHANG X Y, CHEN K, SUN Z H, et al. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries[J]. Energy & Environmental Science, 2020, 13(4): 1076-1095. |
18 | REN W C, MA W, ZHANG S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 23: 707-732. |
19 | YIM T, PARK M S, YU J S, et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries[J]. Electrochimica Acta, 2013, 107: 454-460. |
20 | YANG H J, CHEN J H, YANG J, et al. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(19): 7306-7318. |
21 | MARKEVICH E, SALITRA G, TALYOSEF Y, et al. Review-on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: Is the existence of small sulfur molecules necessary?[J]. Journal of the Electrochemical Society, 2016, 164(1): A6244-A6253. |
22 | CHEN W J, LI B Q, ZHAO C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745. |
23 | WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965. |
24 | HOOD Z D, WANG H, LI Y C, et al. The "filler effect": A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes[J]. Solid State Ionics, 2015, 283: 75-80. |
25 | NAGAO M, HAYASHI A, TATSUMISAGO M, et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 274: 471-476. |
26 | YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201602923. |
27 | 陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 236-262. |
LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262. | |
28 | PANG Q, KUNDU D P, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759. |
29 | LI X, YUAN L X, LIU D Z, et al. Solid/quasi-solid phase conversion of sulfur in lithium-sulfur battery[J]. Small, 2022: doi: 10.1002/smll.202106970. |
30 | ZHANG B, QIN X, LI G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531. |
31 | XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513. |
32 | LI Z, YUAN L X, YI Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7): doi: 10.1002/aenm.201301473. |
33 | MARKEVICH E, SALITRA G, ROSENMAN A, et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(39): 19873-19883. |
34 | MEYER B. Elemental sulfur[J]. Chemical Reviews, 1976, 76(3): 367-388. |
35 | BORCHARDT L, OSCHATZ M, KASKEL S. Carbon materials for lithium sulfur batteries—ten critical questions[J]. Chemistry - A European Journal, 2016, 22(22): 7324-7351. |
36 | HU L, LU Y, LI X N, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13(11): doi: 10.1002/smll.201603533. |
37 | MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345. |
38 | XU Y H, WEN Y, ZHU Y J, et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries[J]. Advanced Functional Materials, 2015, 25(27): 4312-4320. |
39 | WANG L N, LIN Y X, DECARLO S, et al. Compositions and formation mechanisms of solid-electrolyte interphase on microporous carbon/sulfur cathodes[J]. Chemistry of Materials, 2020, 32(9): 3765-3775. |
40 | WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492. |
41 | GUO J C, YANG Z C, YU Y C, et al. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society, 2013, 135(2): 763-767. |
42 | FANOUS J, WEGNER M, GRIMMINGER J, et al. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028. |
43 | WEI S Y, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152. |
44 | ZHANG S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies, 2014, 7(7): 4588-4600. |
45 | MUKKABLA R, BUCHMEISER M R. Cathode materials for lithium-sulfur batteries based on sulfur covalently bound to a polymeric backbone[J]. Journal of Materials Chemistry A, 2020, 8(11): 5379-5394. |
46 | YANG H J, LI Q Y, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications (Cambridge, England), 2018, 54(33): 4132-4135. |
47 | YANG H J, NAVEED A, LI Q Y, et al. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Materials, 2018, 15: 299-307. |
48 | WANG W X, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Letters, 2018, 3(12): 2899-2907. |
49 | JIN Z Q, LIU Y G, WANG W K, et al. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy Storage Materials, 2018, 14: 272-278. |
50 | WANG X F, QIAN Y M, WANG L N, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Advanced Functional Materials, 2019, 29(39): doi: 10.1002/adfm. 201902929. |
51 | DUAN B C, WANG W K, WANG A B, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(42): 13261. |
52 | DU H P, ZHANG Z H, HE J J, et al. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries[J]. Small, 2017, 13(44): doi: 10.1002/smll.201702277. |
53 | LI Z, ZHANG J T, WU H B, et al. An improved Li-SeS2 battery with high energy density and long cycle life[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700281. |
54 | XU G L, MA T Y, SUN C J, et al. Insight into the capacity fading mechanism of amorphous Se2S5 confined in micro/mesoporous carbon matrix in ether-based electrolytes[J]. Nano Letters, 2016, 16(4): 2663-2673. |
55 | ZHANG J T, HU H, LI Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55(12): 3982-3986. |
56 | XU K L, LIU X J, LIANG J W, et al. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Letters, 2018, 3(2): 420-427. |
57 | LI X N, LIANG J W, ZHANG K L, et al. Amorphous S-rich S1– xSex/C (x≤0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186. |
58 | ZENG L C, YAO Y, SHI J N, et al. A flexible S1- xSex@porous carbon nanofibers (x≤0.1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries[J]. Energy Storage Materials, 2016, 5: 50-57. |
59 | 王久林. 锂硫二次电池之我见[J]. 储能科学与技术, 2020, 9(1): 1-4. |
WANG Jiulin. The opinions for lithium sulfur battery[J]. Energy Storage Science and Technology, 2020, 9(1): 1-4. | |
60 | SUN F G, ZHANG B, TANG H, et al. Heteroatomic TexS1- x molecule/C nanocomposites as stable cathode materials in carbonate-based electrolytes for lithium-chalcogen batteries[J]. Journal of Materials Chemistry A, 2018, 6(21): 10104-10110. |
61 | LIN Z, LIU Z C, FU W J, et al. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries[J]. Angewandte Chemie, 2013, 125(29): 7608-7611. |
62 | TANIBATA N, TSUKASAKI H, DEGUCHI M, et al. A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 11224-11228. |
63 | YE H L, MA L, ZHOU Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13091-13096. |
64 | LI X N, LIANG J W, LI W H, et al. Stabilizing sulfur cathode in carbonate and ether electrolytes: excluding long-chain lithium polysulfide formation and switching lithiation/delithiation route[J]. Chemistry of Materials, 2019, 31(6): 2002-2009. |
65 | SAKUDA A, OHARA K, FUKUDA K, et al. Amorphous metal polysulfides: Electrode materials with unique insertion/extraction reactions[J]. Journal of the American Chemical Society, 2017, 139(26): 8796-8799. |
66 | SAKUDA A, TAGUCHI N, TAKEUCHI T, et al. Amorphous niobium sulfides as novel positive-electrode materials[J]. ECS Electrochemistry Letters, 2014, 3(7): A79-A81. |
67 | LUO C, ZHU Y J, WEN Y, et al. Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries[J]. Advanced Functional Materials, 2014, 24(26): 4082-4089. |
68 | LI Z, ZHANG J T, LU Y, et al. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Science Advances, 2018, 4(6): eaat1687. |
69 | JIANG M, WANG K L, GAO S, et al. Selenium as extra binding site for sulfur species in sulfurized polyacrylonitrile cathodes for high capacity lithium-sulfur batteries[J]. Chem Electro Chem, 2019, 6(5): 1365-1370. |
70 | ZHU T C, PANG Y, WANG Y G, et al. S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery[J]. Electrochimica Acta, 2018, 281: 789-795. |
71 | ZHANG W, LI S P, WANG L H, et al. Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li-S batteries[J]. Sustainable Energy & Fuels, 2020, 4(7): 3588-3596. |
72 | CHEN X, PENG L F, WANG L H, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nature Communications, 2019, 10: 1021. |
73 | LI S P, HAN Z L, HU W, et al. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161. |
74 | HE B, RAO Z X, CHENG Z X, et al. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003690. |
75 | KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. Journal of Power Sources, 2008, 182(2): 621-625. |
76 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 228803. |
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 228803. | |
77 | NAGAO M, HAYASHI A, TATSUMISAGO M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery[J]. Electrochemistry Communications, 2012, 22: 177-180. |
78 | NAGAO M, HAYASHI A, TATSUMISAGO M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte[J]. Electrochimica Acta, 2011, 56(17): 6055-6059. |
79 | NAGAO M, HAYASHI A, TATSUMISAGO M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature[J]. Energy Technology, 2013, 1(2/3): 186-192. |
80 | NAGAO M, IMADE Y, NARISAWA H, et al. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte[J]. Journal of Power Sources, 2013, 222: 237-242. |
81 | ZHANG Q, HUANG N, HUANG Z, et al. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155. |
82 | XU R C, XIA X H, WANG X L, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
83 | XU R C, XIA X H, LI S H, et al. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor[J]. Journal of Materials Chemistry A, 2017, 5(13): 6310-6317. |
84 | KIM S, OGUCHI H, TOYAMA N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nature Communications, 2019, 10: 1081. |
85 | SHEN C, XIE J X, ZHANG M, et al. A Li-Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios[J]. Journal of Power Sources, 2019, 414: 412-419. |
86 | PANG Q, SHYAMSUNDER A, NARAYANAN B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries[J]. Nature Energy, 2018, 3(9): 783-791. |
87 | WANG H, ADAMS B D, PAN H L, et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions[J]. Advanced Energy Materials, 2018, 8(21): doi: 10.1002/aenm.201800590. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[3] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[4] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[5] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[6] | 刘立君, 宁雅倩, 李晓庆, 刘晓燕. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, (): 1-9. |
[7] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[8] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[9] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[10] | 吴小凌, 周涛, 刘钰照, 杜艳平, 陈会平, 李顺. 基于空气紊流的中空底孔微柱阵列设计及强化散热数值研究[J]. 储能科学与技术, 2022, 11(6): 1980-1987. |
[11] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[12] | 王灿, 马盼, 祝国梁, 魏水淼, 杨植禄, 张志宇. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. |
[13] | 郝佳豪, 越云凯, 张家俊, 杨俊玲, 李晓琼, 宋衍昌, 张振涛. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, (): 1-10. |
[14] | 杨娜, 王成成, 杨慧, 胡志昊, 童莉葛, 李仲博, 王立, 丁玉龙, 李娜. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
[15] | 王为术, 张向薪, 姚紫琨, 甄娟. MgH2 反应器储氢反应速度特性[J]. 储能科学与技术, 2022, 11(5): 1543-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||