储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1902-1918.doi: 10.19799/j.cnki.2095-4239.2022.0206
收稿日期:
2022-04-15
修回日期:
2022-05-15
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
庞全全
E-mail:liyitao@pku.edu.cn;qqpang@pku.edu.com
作者简介:
李一涛(1997—),男,硕士研究生,研究方向为准固态锂硫电池,E-mail:liyitao@pku.edu.cn;
基金资助:
LI Yitao(), SHEN Kaier, PANG Quanquan()
Received:
2022-04-15
Revised:
2022-05-15
Online:
2022-06-05
Published:
2022-06-13
Contact:
PANG Quanquan
E-mail:liyitao@pku.edu.cn;qqpang@pku.edu.com
摘要:
固态电池利用固态电解质替换电解液,为电池的发展提供了高能量密度和高安全性的保障,其中硫化物固态电解质因其高离子电导率等优势受到了广泛关注。然而使用硫化物固态电解质还会面临电极/电解质接触较差、与电极发生界面副反应、空气稳定性差的问题,往往需要与一些有机物配合以改善电池性能,例如有机溶剂、有机电解液或聚合物。本文综述了不同种类有机物对硫化物固态电解质的辅助作用,首先回顾了基于硫化物固态电解质的准固态电池发展现状,分别从正极、电解质、负极及相互界面处添加电解液或溶液的角度,阐述了液体添加对准固态电池产生的界面浸润、构筑保护层等增益作用;其次介绍了聚合物/硫化物复合固态电解质的湿法和干法制备,对比了极性和非极性聚合物黏结剂在制备工艺上的差异,着重分析了有机组分的添加对复合电解质离子电导率等性能的影响;阐述了通过溶液法对复合正极内部界面的改善方法,并补充介绍了薄片状(Sheet-type)电极的制备工艺与发展前景;最后总结了目前有机组分在与硫化物固态电解质配合时面临的难点,展望了未来研究工作的发展方向,为组装高性能硫化物基固态电池提供思路。
中图分类号:
李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918.
LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
4 | XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513-537. |
5 | 孙滢智, 黄佳琦, 张学强, 等. 基于硫化物固态电解质的固态锂硫电池研究进展[J]. 储能科学与技术, 2017, 6(3): 464-478. |
SUN Y Z, HUANG J Q, ZHANG X Q, et al. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. | |
6 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemInform, 2004, 35(50): doi:10.1002/chin.200450271. |
8 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1: 16042. |
9 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
10 | ZHANG Q, CAO D X, MA Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): doi:10.1002/adma.201901131. |
11 | YAMANE H, SHIBATA M, SHIMANE Y, et al. Crystal structure of a superionic conductor, Li7P3S11[J]. Solid State Ionics, 2007, 178(15/16/17/18): 1163-1167. |
12 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 627-631. |
13 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
14 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
15 | DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758. |
16 | BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1-5. |
17 | ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686. |
18 | HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255. |
19 | KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Advanced Energy Materials, 2021, 11(1): doi: 10.1002/aenm.202002689. |
20 | MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116-119. |
21 | LIANG Y H, LIU H, WANG G X, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): doi: 10.1002/inf2.12292. |
22 | PANG Q, LIANG X, SHYAMSUNDER A, et al. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal[J]. Joule, 2017, 1(4): 871-886. |
23 | PARK K H, OH D Y, CHOI Y E, et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries[J]. Advanced Materials, 2016, 28(9): 1874-1883. |
24 | LIU Z C, FU W J, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
25 | RANGASAMY E, LIU Z C, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387. |
26 | ZHOU L, PARK K-H, SUN X, et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity [J]. ACS Energy Letters, 2018, 4(1): 265-270. |
27 | 朱鑫鑫, 蒋伟, 万正威, 等. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
ZHU X X, JIANG W, WAN Z W, et al. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. | |
28 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 159-186. |
ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22):159-186. | |
29 | BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933. |
30 | JUDEZ X, MARTINEZ-IBAÑEZ M, SANTIAGO A, et al. Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives[J]. Journal of Power Sources, 2019, 438: doi:10.1016/j.jpowsour.2019.226985. |
31 | CHENG X L, PAN J, ZHAO Y, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7): doi:10.1002/aenm.201702184. |
32 | ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem, 2019, 5(9): 2326-2352. |
33 | LIU L L, QI X G, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636. |
34 | KIM H W, MANIKANDAN P, LIM Y J, et al. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 17025-17032. |
35 | CHENG E J, KIMURA T, SHOJI M, et al. Ceramic-based flexible sheet electrolyte for Li batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10382-10388. |
36 | CHENG E J, SHOJI M, ABE T, et al. Ionic liquid-containing cathodes empowering ceramic solid electrolytes[J]. iScience, 2022, 25(3): doi: 10.1016/j.isci.2022.103896. |
37 | OH D Y, NAM Y J, PARK K H, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(22): doi:10.1002/aenm.201500865. |
38 | SAHU G, LIN Z, LI J C, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ Sci, 2014, 7(3): 1053-1058. |
39 | OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201802927. |
40 | CAO Y, ZUO P J, LOU S F, et al. A quasi-solid-state Li-S battery with high energy density, superior stability and safety[J]. Journal of Materials Chemistry A, 2019, 7(11): 6533-6542. |
41 | CAO Y, LOU S F, SUN Z, et al. Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries[J]. Chemical Engineering Journal, 2020, 382: doi:10.1016/j.cej.2019.123046. |
42 | ZHENG B Z, ZHU J P, WANG H C, et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25473-25482. |
43 | CHEN Y, LI W W, SUN C Z, et al. Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries[J]. Advanced Energy Materials, 2021, 11(4): doi: 10.1002/aenm.202002545. |
44 | MINAMI K, HAYASHI A, TATSUMISAGO M. Characterization of solid electrolytes prepared from Li2S-P2S5 glass and ionic liquids[J]. Journal of the Electrochemical Society, 2010, 157(12): A1296. |
45 | SHIMAMOTO K, SAKUDA A, TATSUMISAGO M, et al. Quasi-solid electrolytes comprising sulfide electrolyte and carboxylate esters: Investigation of the influence of the carboxylate ester structure[J]. Journal of the Electrochemical Society, 2020, 167(12): doi:10.1149/1945-7111/abacec. |
46 | SHIMAMOTO K, SAKUDA A, TATSUMISAGO M, et al. Preparation and characterization of composite quasi-solid electrolytes composed of 75Li2S·25P2S5 glass and phosphate esters[J]. Journal of Power Sources, 2020, 479: doi:10.1016/j.jpowsour.2020.228826. |
47 | TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Applied Energy Materials, 2019, 2(9): 6542-6550. |
48 | PHILIP M A, SULLIVAN P T, ZHANG R X, et al. Improving cell resistance and cycle life with solvate-coated thiophosphate solid electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2014-2021. |
49 | SHIN M, GEWIRTH A A. Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life[J]. Advanced Energy Materials, 2019, 9(26): doi:10.1002/aenm.201900938. |
50 | XU R C, HAN F D, JI X, et al. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. |
51 | WU J H, LIU S F, HAN F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): doi:10.1002/adma.202000751. |
52 | YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi:10.1002/aenm.201602923. |
53 | SU Y B, YE L H, FITZHUGH W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. |
54 | FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12): eaau9245. |
55 | WAN H L, LIU S F, DENG T, et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Letters, 2021, 6(3): 862-868. |
56 | UMESHBABU E, ZHENG B Z, ZHU J P, et al. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10 GeP2S12 solid electrolyte interface stability[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18436-18447. |
57 | LI Y, HALACOGLU S, SHREYAS V, et al. Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries[J]. Chemical Engineering Journal, 2022, 434: doi:10.1016/j.cej.2022.134679. |
58 | YU J Z, HU Y S, PAN F, et al. A class of liquid anode for rechargeable batteries with ultralong cycle life[J]. Nature Communications, 2017, 8: 14629. |
59 | CONG G T, WANG W W, LAI N C, et al. A high-rate and long-life organic-oxygen battery[J]. Nature Materials, 2019, 18(4): 390-396. |
60 | WANG W W, LU Y C. Achieving a stable nonaqueous air cathode under true ambient air[J]. ACS Energy Letters, 2020, 5(12): 3804-3812. |
61 | PENG J, WU D X, SONG F M, et al. High Current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode[J]. Advanced Functional Materials, 2022, 32(2): doi:10.1002/adfm.202105776. |
62 | LI Y, ARNOLD W, THAPA A, et al. Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42653-42659. |
63 | CHEN B, HUANG Z, CHEN X T, et al. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery[J]. Electrochimica Acta, 2016, 210: 905-914. |
64 | ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
65 | CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80. |
66 | WANG S, ZHANG X, LIU S J, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries[J]. Journal of Materiomics, 2020, 6(1): 70-76. |
67 | ZHANG Y B, CHEN R J, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Materials, 2020, 25: 145-153. |
68 | LIU H, HE P G, WANG G X, et al. Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2022, 430: doi:10.1016/j.cej.2021.132991. |
69 | LIU G Z, SHI J M, ZHU M T, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 38: 249-254. |
70 | LUO S T, WANG Z Y, FAN A R, et al. A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film[J]. Journal of Power Sources, 2021, 485: doi:10.1016/j.jpowsour.2020.229325. |
71 | LI M R, FRERICHS J E, KOLEK M, et al. Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Advanced Functional Materials, 2020, 30(14): doi:10.1002/adfm.201910123. |
72 | LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. Journal of the Electrochemical Society, 2017, 164(9): A2075-A2081. |
73 | LEE K, LEE J, CHOI S, et al. Thiol-ene click reaction for fine polarity tuning of polymeric binders in solution-processed all-solid-state batteries[J]. ACS Energy Letters, 2019, 4(1): 94-101. |
74 | EMLEY B, LIANG Y L, CHEN R, et al. On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries[J]. Materials Today Physics, 2021, 18: doi: 10.1016/j.mtphys.2021.100397. |
75 | ZHU G L, ZHAO C Z, PENG H J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(32): doi:10.1002/adfm.202101985. |
76 | CAO D X, LI Q, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy-density all-solid-state batteries[J]. Advanced Materials, 2021, 33(52): doi: 10.1002/adma.202105505. |
77 | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. |
78 | XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. |
79 | KIM D H, LEE Y H, SONG Y B, et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 718-727. |
80 | HAYASHI A, HARAYAMA T, MIZUNO F, et al. Mechanochemical synthesis of hybrid electrolytes from the Li2S-P2S5 glasses and polyethers[J]. Journal of Power Sources, 2006, 163(1): 289-293. |
81 | HAYASHI A, HARAYAMA T, MIZUNO F, et al. Characterization of hybrid electrolytes prepared from the Li2S-P2S5 glasses and alkanediols[J]. Solid State Ionics, 2011, 192(1): 130-133. |
82 | WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Advanced Materials, 2015, 27(43): 6922-6927. |
83 | VILLALUENGA I, WUJCIK K H, TONG W, et al. Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 52-57. |
84 | INADA T, TAKADA K, KAJIYAMA A, et al. Fabrications and properties of composite solid-state electrolytes[J]. Solid State Ionics, 2003, 158(3/4): 275-280. |
85 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. |
86 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. |
87 | JIANG T L, HE P G, LIANG Y H, et al. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2021.129965. |
88 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. |
89 | TERAGAWA S, ASO K, TADANAGA K, et al. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(14): 5095. |
90 | YUBUCHI S, TERAGAWA S, ASO K, et al. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries[J]. Journal of Power Sources, 2015, 293: 941-945. |
91 | ROSERO-NAVARRO N C, MIURA A, TADANAGA K. Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries[J]. Journal of Power Sources, 2018, 396: 33-40. |
92 | WANG C H, LI X, ZHAO Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries[J]. Small Methods, 2019, 3(10): doi:10.1002/smtd.201900261. |
93 | HAN F D, YUE J, FAN X L, et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Letters, 2016, 16(7): 4521-4527. |
94 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. |
95 | YAO X Y, LIU D, WANG C S, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. |
96 | ZHANG Q, MWIZERWA J P, WAN H L, et al. Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost[J]. Journal of Materials Chemistry A, 2017, 5(45): 23919-23925. |
97 | XU R C, WANG X L, ZHANG S Z, et al. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. Journal of Power Sources, 2018, 374: 107-112. |
98 | KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. |
99 | OH D Y, KIM D H, JUNG S H, et al. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries[J]. J Mater Chem A, 2017, 5(39): 20771-20779. |
100 | NAM Y J, OH D Y, JUNG S H, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes[J]. Journal of Power Sources, 2018, 375: 93-101. |
101 | KIM K T, OH D Y, JUN S, et al. Tailoring slurries using cosolvents and Li salt targeting practical all-solid-state batteries employing sulfide solid electrolytes[J]. Advanced Energy Materials, 2021, 11(17): doi: 10.1002/aenm.202003766. |
102 | SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. Journal of the Electrochemical Society, 2017, 164(12): A2474-A2478. |
103 | ZHANG J, ZHONG H Y, ZHENG C, et al. All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content[J]. Journal of Power Sources, 2018, 391: 73-79. |
104 | LEE J, LEE K, LEE T, et al. In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries[J]. Advanced Materials, 2020, 32(37): doi:10.1002/adma.202001702. |
105 | CAO D X, SUN X, WANG Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Materials, 2022, 48: 458-465. |
106 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
107 | LIU T F, YUAN Y F, TAO X Y, et al. Bipolar electrodes for next-generation rechargeable batteries[J]. Advanced Science, 2020, 7(17): doi:10.1002/advs.202001207. |
[1] | 张弘, 张阳, 赵耀, 王久林. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[4] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[5] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[6] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[7] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[8] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[9] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[10] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[11] | 高永晟, 陈光海, 王欣然, 白莹, 吴川. 钠离子电池电解质安全性:改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317. |
[12] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[13] | 位广玲, 江颖, 周佳辉, 王紫恒, 黄永鑫, 谢嫚, 吴锋. 钠离子电池金属氧/硫/硒化物负极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1318-1326. |
[14] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[15] | 高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||