储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1919-1933.doi: 10.19799/j.cnki.2095-4239.2022.0204

• 化工与储能专刊 • 上一篇    下一篇

固固转化反应硫正极的研究进展

张弘1(), 张阳1, 赵耀1, 王久林1,2()   

  1. 1.上海交通大学化学化工学院,上海 200240
    2.新疆大学化学学院,新疆 乌鲁木齐 830046
  • 收稿日期:2022-04-14 修回日期:2022-05-07 出版日期:2022-06-05 发布日期:2022-06-13
  • 通讯作者: 王久林 E-mail:zh120110910080@sjtu.edu.cn;wangjiulin@sjtu.edu.cn
  • 作者简介:张弘(1999—),女,硕士研究生,主要研究方向为固态锂硫二次电池。E-mail:zh120110910080@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2400300);上海市优秀学术带头人(20XD1401900)

Research progress of sulfur cathode in solid-solid conversion reaction

ZHANG Hong1(), ZHANG Yang1, ZHAO Yao1, WANG Jiulin1,2()   

  1. 1.College of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
    2.College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2022-04-14 Revised:2022-05-07 Online:2022-06-05 Published:2022-06-13
  • Contact: WANG Jiulin E-mail:zh120110910080@sjtu.edu.cn;wangjiulin@sjtu.edu.cn

摘要:

锂硫电池(Li-S)理论能量密度高,且硫资源在地壳中分布丰富,被认为是最有前途的二次电池之一。传统液态锂硫电池中硫正极经历“固-液-固”转化反应,在充放电过程会产生可溶性多硫化物,引发溶解穿梭效应,导致活性材料损失和循环寿命不足等问题。“固-固”转化反应的硫正极可以避免长链多硫化物的溶解,从根本上解决穿梭问题。本文详细介绍了在硫正极实现“固-固”转化反应的不同策略及研究进展,分别对微孔结构限硫、有机聚合物共价键固硫、有机/无机杂化协同固硫等策略进行了机理探讨、优化方法总结和未来挑战分析。之后阐述了与上述固固转化反应硫正极匹配的固体电解质,并简要介绍了“准固态”转化的研究策略,最后对构建高能量密度锂硫电池提出了展望。

关键词: 固固转化反应, 微孔碳限硫, 有机物共价键固硫, 有机/无机协同固硫

Abstract:

Lithium sulfur (Li-S) battery is considered one of the most promising secondary batteries because of its ultra-high theoretical energy density and abundant sulfur resources. The sulfur cathode in a typical liquid Li-S battery undergoes a "solid-liquid-solid" conversion reaction, which produces soluble polysulfides throughout the charging and discharging process, causing the shuttle effect and resulting in active material loss and inadequate cycle life. The "solid-solid" conversion reaction of the sulfur cathode has been suggested and investigated to avoid the production of soluble long-chain polysulfides and essentially solve the shuttle problem. Various methodologies and research advances toward establishing a "solid-solid" conversion process in the sulfur cathode are discussed in this study. The sulfur limitation mechanisms in microporous structures, covalent sulfur fixing in organic polymers, inorganic heteroatom doping, and organic polymer skeleton/inorganic hybrid synergy are reviewed. Meanwhile, their optimization and enhancement techniques and future challenges are summarized. Furthermore, the solid-state electrolyte paired with the sulfur-positive electrode of the solid-solid conversion process is discussed, followed by a brief introduction to the common techniques of "quasi-solid" phase conversion. Finally, we propose the development of a high-energy density Li-S battery.

Key words: solid-solid conversion reaction, confining sulfur within microporous carbon, covalent sulfur fixation in organic substance, organic/inorganic synergistic sulfur fixation

中图分类号: