储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1854-1868.doi: 10.19799/j.cnki.2095-4239.2021.0429
田丰(), 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2021-08-18
修回日期:
2021-08-20
出版日期:
2021-09-05
发布日期:
2021-09-08
作者简介:
田丰(1995—),男,博士研究生,研究方向为固态锂离子电池正极材料,E-mail:基金资助:
Feng TIAN(), Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-08-18
Revised:
2021-08-20
Online:
2021-09-05
Published:
2021-09-08
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年6月1日至2021年7月31日上线的锂电池研究论文,共有2739篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极以及尖晶石镍锰酸锂材料的包覆和掺杂改性。金属锂负极的研究包含金属锂的表面修饰、三维结构设计以及其沉积形态和均匀性。硅基复合负极材料的研究侧重于混合电极的结构设计,尤其是各类黏结剂的开发以缓解循环过程中Si的体积变化,维持电极完整性。固态电解质的研究主要是对现有固态电解质的进一步改性优化以及对新型固态电解质的探索,而其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配,以及对新的功能性添加剂的探索。固态电池方向更多地集中于界面问题的研究,锂硫电池则更多关注“穿梭”效应的改善。电池测试技术方面主要涉及金属锂沉积行为的三维表征以及快充条件下电极材料各性质的测量。理论计算工作涉及到界面处离子传输的研究,而界面反应部分涉及到SEI形成的分析。此外,集流体的改性以及电极预锂化研究工作也有多篇。
中图分类号:
田丰, 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.6.1—2021.7.31)[J]. 储能科学与技术, 2021, 10(5): 1854-1868.
Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868.
1 | JAMIL S, BIN Y A, HEE Y S, et al. Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries[J]. Chemical Engineering Journal, 2021, 416: doi: 10.1016/j.cej.2021.129118. |
2 | TAN X H, GUO L M, ZHAO T Q, et al. Direct elimination of detrimental surface phases parasitic to LiNixCo1-xO2(x=0.8 and 0.9) with unique 3D porous structures during synthesis[J]. Advanced Materials Interfaces, 2021, 8(13): doi: 10.1002/admi.202100392. |
3 | LEE S, LI W D, DOLOCAN A, et al. In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202100858. |
4 | FU C, MENG L, WANG J, et al. Bonding the terminal isocyanate-related functional group to the surface manganese ions to enhance Li-rich cathode's cycling stability[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17565-17576. |
5 | LI S M, WU J, LI J Y, et al. Facilitated coating of Li3PO4 on the rough surface of LiNi0.85Co0.1Mn0.05O2 cathodes by synchronous lithiation[J]. ACS Applied Energy Materials, 2021, 4(3): 2257-2265. |
6 | CHEN Z, NGUYEN H D, ZARRABEITIA M, et al. Lithium phosphonate functionalized polymer coating for high-energy Li[Ni0.8Co0.1Mn0.1]O2 with superior performance at ambient and elevated temperatures[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202105343. |
7 | WANG D Y, SI Y B, GUO W, et al. Electrosynthesis of 1, 4-bis(diphenylphosphanyl) tetrasulfide via sulfur radical addition as cathode material for rechargeable lithium battery[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-23521-1. |
8 | ZHANG K, JIANG Z W, NING F H, et al. Metal-ligand π interactions in lithium-rich Li2 RhO3 cathode material activate bimodal anionic redox[J]. Advanced Energy Materials, 2021, 11(30): doi: 10.1002/aenm.202100892. |
9 | MEREACRE V, BOHN N, STÜBLE P, et al. Instantaneous surface Li3PO4 coating and Al-Ti doping and their effect on the performance of LiNi0.5Mn1.5O4 cathode materials[J]. ACS Applied Energy Materials, 2021, 4(5): 4271-4276. |
10 | CHEN H L, HE P, LI M, et al. Bifunctional sulfonated graphene-modified LiNi0.5Mn1.5O4 for long-life and high-energy-density lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(6): 5963-5972. |
11 | FAN C Y, XIE D, ZHANG X H, et al. Homogeneous Li+ flux distribution enables highly stable and temperature-tolerant lithium anode[J]. Advanced Functional Materials, 2021, 31(32): doi: 10. 1002/adfm.202102158. |
12 | CHEN X R, YAN C, DING J F, et al. New insights into "dead lithium" during stripping in lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 62: 289-294. |
13 | GHOSH A, CHEREPANOV P, NGUYEN C, et al. Simple route to lithium dendrite prevention for long cycle-life lithium metal batteries[J]. Applied Materials Today, 2021, 23: doi: 10.1016/j.apmt.2021.101062. |
14 | LI S, LI Z D, HUAI L Y, et al. A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes[J]. Journal of Energy Chemistry, 2021, 62: 179-190. |
15 | ZHOU J, QIAN T, WANG Z, et al. Healable lithium alloy anode with ultrahigh capacity[J]. Nano Letters, 2021, 21(12): 5021-5027. |
16 | ZHANG S J, YIN Z W, WU Z Y, et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure[J]. Energy Storage Materials, 2021, 40: 337-346. |
17 | LU Y, LU Y T, JIN C B, et al. Natural wood structure inspires practical lithium-metal batteries[J]. ACS Energy Letters, 2021, 6(6): 2103-2110. |
18 | DOU F, WENG Y H, WANG Q Y, et al. In situ imaging analysis of the inhibition effect of functional coating on the volume expansion of silicon anodes[J]. Chemical Engineering Journal, 2021, 417: doi: 10.1016/j.cej.2020.128122. |
19 | EZZEDINE M, ZAMFIR M R, JARDALI F, et al. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24734-24746. |
20 | HERNANDHA R F H, RATH P C, UMESH B, et al. Supercritical CO2-assisted SiOx/carbon multi-layer coating on Si anode for lithium-ion batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202104135. |
21 | LI Y Z, LU J M, WANG Z Y, et al. Suppressing continuous volume expansion of Si nanoparticles by an artificial solid electrolyte interphase for high-performance lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(24): 8059-8068. |
22 | ZHU R Y, WANG Z H, HU X J, et al. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(33): doi: 10.1002/adfm.202101487. |
23 | HE J R, ZHANG L Z, ZHONG H X. Enhanced adhesion and electrochemical performance of Si anodes with gum Arabic grafted poly(acrylic acid) as a water-soluble binder[J]. Polymer International, 2021, doi: 10.1002/pi.6263. |
24 | DENG L, DENG S S, PAN S Y, et al. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22567-22576. |
25 | HU Y Y, YOU J H, ZHANG S J, et al. Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery[J]. Electrochimica Acta, 2021, 386: doi: 10.1016/j.electacta.2021.138361. |
26 | ZHAO E Y, GUO Z L, LIU J, et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries[J]. Electrochimica Acta, 2021, 387: doi: 10.1016/j.electacta.2021.138491. |
27 | ZHU T, LIU G. Communication-functional conductive polymer binder for practical Si-based electrodes[J]. Journal of the Electrochemical Society, 2021, 168(5): doi: 10.1149/1945-7111/abff01. |
28 | HU L L, ZHANG X D, LI B, et al. Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries[J]. Chemical Engineering Journal, 2021, 420: doi: 10.1016/j.cej.2021.129991. |
29 | XIA Y, ZHAO T, ZHU X, et al. Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-23150-8. |
30 | ZHU G J, TANG C, JIANG M M, et al. Regulating the interfacial behavior of carbon nanotubes for fast lithium storage[J]. Electrochimica Acta, 2021, 388: doi: 10.1016/j.electacta.2021.138591. |
31 | LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-020-20297-8. |
32 | LIU Y, SU H, LI M, et al. In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping[J]. Journal of Materials Chemistry A, 2021, 9(23): 13531-13539. |
33 | JUNG S K, GWON H, YOON G, et al. Pliable lithium superionic conductor for all-solid-state batteries[J]. ACS Energy Letters, 2021, 6(5): 2006-2015. |
34 | ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943. |
35 | OHSAKI S, YANO T, HATADA A, et al. Size control of sulfide-based solid electrolyte particles through liquid-phase synthesis[J]. Powder Technology, 2021, 387: 415-420. |
36 | FANG R, XU B, GRUNDISH N S, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries[J]. Angew andte Chemie International Edtion, 2021, 60(32): 17701-17706. |
37 | JIANG Z, LI Z X, WANG X L, et al. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30739-30745. |
38 | LI H, DU Y F, WU X M, et al. Developing "polymer-in-salt" high voltage electrolyte based on composite lithium salts for solid-state Li metal batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202103049. |
39 | LU P, LIU L, WANG S, et al. Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity[J]. Advanced Materials, 2021, 33(32): doi: 10.1002/adma.202100921. |
40 | YE L H, GIL-GONZÁLEZ E, LI X. Li9.54Si1.74(P1-xSbx)1.44S11.7Cl0.3: A functionally stable sulfide solid electrolyte in air for solid-state batteries[J]. Electrochemistry Communications, 2021, 128: doi: 10.1016/j.elecom.2021.107058. |
41 | LIU X, SONG X S, GUO Z J, et al. Biphasic electrolyte inhibiting the shuttle effect of redox molecules in lithium-metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(30): 16360-16365. |
42 | GUO W, ZHANG W, SI Y, et al. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nature Communications, 2021, 12(1): doi : 10. 1038/s41467-021-23155-3. |
43 | CHO Y G, LI M Q, HOLOUBEK J, et al. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte[J]. ACS Energy Letters, 2021, 6(5): 2016-2023. |
44 | YANG G, FRISCO S, TAO R M, et al. Robust solid/electrolyte interphase(SEI) formation on Si anodes using glyme-based electrolytes[J]. ACS Energy Letters, 2021, 6(5): 1684-1693. |
45 | GU Y X, FANG S H, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372. |
46 | LIU M Z, VATAMANU J, CHEN X L, et al. Hydrolysis of LiPF6-containing electrolyte at high voltage[J]. ACS Energy Letters, 2021, 6(6): 2096-2102. |
47 | LIU Y, YU P P, SUN Q T, et al. Predicted operando polymerization at lithium anode via boron insertion[J]. ACS Energy Letters, 2021, 6(6): 2320-2327. |
48 | RODRIGO N D, TAN S, SHADIKE Z, et al. Improved low temperature performance of graphite/Li cells using isoxazole as a novel cosolvent in electrolytes[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945-7111/ac11a6. |
49 | SHOMURA R, SAKAKIBARA K, MARUKANE S, et al. Novel use of a pyridinium salt to form a solid electrolyte interphase(SEI) on high voltage lithium-excess layered positive active material[J]. Bulletin of the Chemical Society of Japan, 2021, 94(5): 1594-1601. |
50 | ZHANG J N, WU H, TANG B, et al. Trioxane-derived stable solid electrolyte interphase enlightens high-mass-loading LiNi0.5Co0.2Mn0.3O2/Li metal battery[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/ac0b25. |
51 | ZHAO H J, QIAN Y X, HU S G, et al. Tale of three phosphate additives for stabilizing NCM811/graphite pouch cells: Significance of molecular structure-reactivity in dictating interphases and cell performance[J]. ACS Applied Materials & Interfaces, 2021,13(25): 29676-29690. |
52 | LEE S H, HWANG J Y, MING J, et al. Long-lasting solid electrolyte interphase for stable Li-metal batteries[J]. ACS Energy Letters, 2021, 6(6): 2153-2161. |
53 | XU L Y, YANG J B, HUANG M J, et al. Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries[J]. Chemical Engineering Journal, 2021, 419: doi: 10.1016/j.cej.2021.129494. |
54 | DU M J, SUN Y, LIU B, et al. Smart construction of an intimate lithium|garnet interface for all-solid-state batteries by tuning the tension of molten lithium[J]. Advanced Functional Materials, 2021, 31(31): doi: 10.1002/adfm.202101556. |
55 | CHEN X B, SASTRE J, ARIBIA A, et al. Flash lamp annealing enables thin-film solid-state batteries on aluminum foil[J]. ACS Applied Energy Materials, 2021, 4(6): 5408-5414. |
56 | WANG S, TANG M X, ZHANG Q H, et al. Lithium argyrodite as solid electrolyte and cathode precursor for solid-state batteries with long cycle life[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202101370. |
57 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. |
58 | ZHONG Y R, XIE Y J, HWANG S, et al. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction[J]. Angewandte Chemie International Edition, 2020, 59(33): 14003-14008. |
59 | KITAURA H, HOSONO E, ZHOU H S. An ultrafast process for the fabrication of a Li metal-inorganic solid electrolyte interface[J]. Energy & Environmental Science, 2021, doi: 10.1039/d1ee00759a. |
60 | LI Z W, JIAO S S, YU D, et al. Cationic-polymer-functionalized separator as a high-efficiency polysulfide shuttle barrier for long-life Li-S battery[J]. ACS Applied Energy Materials, 2021, 4(3): 2914-2921. |
61 | GUPTA A, MANTHIRAM A. Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(22): 13242-13251. |
62 | ZHANG X Q, JIN Q, NAN Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(28): 15503-15509. |
63 | FAN Q N, JIANG J C, ZHANG S L, et al. Accelerated polysulfide redox in binder-free Li2S cathodes promises high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202100957. |
64 | WANG Z, OUYANG L, LI H, et al. Layer-by-layer assembly of strong thin films with high lithium ion conductance for batteries and beyond[J]. Small, 2021, 17(32): doi: 10.1002/smll.202100954. |
65 | CHEN P Y, YAN C, CHEN P Y, et al. Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(33): 18031-18036. |
66 | CAO Y, WU Q, CHEN Y C, et al. Magnetic control of electrolyte trapping polysulfide for enhanced lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945711/ac0e4d. |
67 | QI X Q, YANG Y, JIN Q, et al. Two-plateau Li-Se chemistry for high volumetric capacity Se cathodes[J]. Angewandte Chemie International Edition, 2020, 59(33): 13908-13914. |
68 | NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. |
69 | JIANG H Z, HAN Y, WANG H, et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. Journal of Alloys and Compounds, 2021, 874: doi: 10.1016/j.jallcom.2021.159763. |
70 | NEUMANN A, HAMANN T R, DANNER T, et al. Effect of the 3D structure and grain boundaries on lithium transport in garnet solid electrolytes[J]. ACS Applied Energy Materials, 2021, 4(5): 4786-4804. |
71 | DONG K, XU Y L, TAN J W, et al. Unravelling the mechanism of lithium nucleation and growth and the interaction with the solid electrolyte interface[J]. ACS Energy Letters, 2021, 6(5): 1719-1728. |
72 | KOHLER T, HADJIXENOPHONTOS E, JOSHI Y, et al. Reversible oxide formation during cycling of Si anodes[J]. Nano Energy, 2021, 84: doi: 10.1016/j.nanoen.2021.105886. |
73 | RONNEBURG A, SILVI L, COOPER J, et al. Solid electrolyte interphase layer formation during lithiation of single-crystal silicon electrodes with a protective aluminum oxide coating[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21241-21249. |
74 | HOVESTADT L, LUX S, KOELLNER N, et al. Model based investigation of lithium deposition including an optimization of fast charging lithium ion cells[J]. Journal of the Electrochemical Society, 2021, 168(5): doi: 10.1149/1945-7111/abfd75. |
75 | LIU X M, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes[J]. Nature Materials, 2021: 1-6. |
76 | HO A S, PARKINSON D Y, FINEGAN D P, et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging[J]. ACS Nano, 2021, 15(6): 10480-10487. |
77 | MAGNIER L, LECARME L, ALLOIN F, et al. Tomography imaging of lithium electrodeposits using neutron, synchrotron X-ray, and laboratory X-ray sources: A comparison[J]. Frontiers in Energy Research, 2021, 9: doi: 10.3389/fenrg.2021.657712. |
78 | MERRYWEATHER A J, SCHNEDERMANN C, JACQUET Q, et al. Operando optical tracking of single-particle ion dynamics in batteries[J]. Nature, 2021, 594(7864): 522-528. |
79 | PAN H, FU T, ZAN G, et al. Fast Li plating behavior probed by X-ray computed tomography[J]. Nano Letter, 2021, 21(12): 5254-5261. |
80 | SARKAR A, NLEBEDIM I C, SHROTRIYA P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2021, 502: doi: 10.1016/j.jpowsour.2020.229145. |
81 | MOCK M, BIANCHINI M, FAUTH F, et al. Atomistic understanding of the LiNiO2-NiO2 phase diagram from experimentally guided lattice models[J]. Journal of Materials Chemistry A, 2021, 9(26): 14928-14940. |
82 | PARK H, MESNIER A, LEE S, et al. Intrinsic Li distribution in layered transition-metal oxides using low-dose scanning transmission electron microscopy and spectroscopy[J]. Chemistry of Materials, 2021, 33(12): 4638-4650. |
83 | KAUFMAN L A, MCCLOSKEY B D. Surface lithium carbonate influences electrolyte degradation via reactive oxygen attack in lithium-excess cathode materials[J]. Chemistry of Materials, 2021, 33(11): 4170-4176. |
84 | KIM M, ROBERTSON D, DEES D W, et al. Estimating the diffusion coefficient of lithium in graphite: Extremely fast charging and a comparison of data analysis techniques[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/ac0d4f. |
85 | JUNGJOHANN K L, GANNON R N, GORIPARTI S, et al. Cryogenic laser ablation reveals short-circuit mechanism in lithium metal batteries[J]. ACS Energy Letters, 2021, 6(6): 2138-2144. |
86 | LI J Y, HUANG J X, LI H Y, et al. Insight into the redox reaction heterogeneity within secondary particles of nickel-rich layered cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27074-27084. |
87 | KROLL M, DUCHARDT M, KARSTENS S L, et al. Sheet-type all-solid-state batteries with sulfidic electrolytes: Analysis of kinetic limitations based on a cathode morphology study[J]. Journal of Power Sources, 2021, 505: doi: 10.1016/j.jpowsour.2021.230064. |
88 | DU Y T, FUJITA K, SHIRONITA S, et al. Capacity fade characteristics of nickel-based lithium-ion secondary battery after calendar deterioration at 80 ℃[J]. Journal of Power Sources, 2021, 501: doi: 10.1016/j.jpowsour.2021.230005. |
89 | HAFIZ H, SUZUKI K, BARBIELLINI B, et al. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials[J]. Nature, 2021, 594(7862): 213-216. |
90 | CHEN J Q, WANG X G, GAO H T, et al. Rolled electrodeposited copper foil with modified surface morphology as anode current collector for high performance lithium-ion batteries[J]. Surface and Coatings Technology, 2021, 410: doi: 10.1016/j.surfcoat.2021.126881. |
91 | ATTIA P M, HARRIS S J, CHUEH W C. Benefits of fast battery formation in a model system[J]. Journal of the Electrochemical Society, 2021, 168(5): doi: 10.1149/1945-7111/abff35. |
92 | JIN B Y, WANG D Y, ZHU J, et al. A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202104433. |
93 | WANG H W, FU J Z, WANG C, et al. A universal aqueous conductive binder for flexible electrodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202102284. |
94 | YANG L T, LI X, PEI K, et al. Direct view on the origin of high Li+ transfer impedance in all-solid-state battery[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202103971. |
95 | ZHOU C C, SU Z, GAO X L, et al. Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design[J]. Rare Metals, 2021: 1-7. |
96 | HÜTTL J, SEIDL C, AUER H, et al. Ultra-low LPS/LLZO interfacial resistance-towards stable hybrid solid-state batteries with Li-metal anodes[J]. Energy Storage Materials, 2021, 40: 259-267. |
97 | AHMAD Z, VENTURI V, HAFIZ H, et al. Interfaces in solid electrolyte interphase: Implications for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(21): 11301-11309. |
98 | WU Z, CAI Z P, FANG B, et al. A polar and ordered-channel composite separator enables antidendrite and long-cycle lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 25890-25897. |
99 | OVERHOFF G M, NÖLLE R, SIOZIOS V, et al. A thorough analysis of two different pre-lithiation techniques for silicon/carbon negative electrodes in lithium ion batteries[J]. Batteries & Supercaps, 2021, 4(7): 1163-1174. |
100 | QIAO Y, YANG H J, CHANG Z, et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nature Energy, 2021, 6(6): 653-662. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||