1 |
WANG Y, GAO Q, WANG G, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. Int J Energy Res, 2018, 42: 4008-4033.
|
2 |
WANG W, LIN C, TANG P, et al. Thermal characteristic analysis of power lithium-ion battery system for electric vehicle[C]//International Conference on Digital Manufacturing & Automation, 2012: 967-971.
|
3 |
LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie, 2015, 54(15): 4440-4457.
|
4 |
BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): 1-25.
|
5 |
PARHIZI M, AHMED M B, JAIN A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370: 27-35.
|
6 |
吴伟雄. 基于相变材料的动力电池热管理实验及仿真研究[D]. 广州: 广东工业大学, 2015.
|
|
WU W. Experimental and simulation research on thermal management of power cell based on phase change material[D]. Guangzhou: Guangdong University of Technology, 2015.
|
7 |
饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.
|
|
RAO Z H. Research on thermal management of power battery based on solid-liquid phase variable heat transfer medium[D]. Guangzhou: Guangdong South China University of Technology, 2013.
|
8 |
JIANG Z, QU Z, ZHANG J, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268: doi: 10.1016/j.apenergy.2020.115007.
|
9 |
WANG Y, GAO Q, WANG G, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. Int J Energy Res, 2018, 42: 4008-4033.
|
10 |
WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
|
11 |
WENG J, OUYANG D, YANG X, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Convers Manage, 2019, 200: doi: 10.1016/j.enconman.2019.112071.
|
12 |
LV X , KAO H, LI M. Thermal analysis in phase transition process of expanded graphite/paraffin wax composite phase change materials[J]. Materials Review, 2011, 25: 131-134.
|
13 |
CHEN F, HUANG R, WANG C, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: 115-154.
|
14 |
ZHAO J, WU C, RAO Z. Investigation on the cooling and temperature uniformity of power battery pack based on gradient phase change materials embedded thin heat sinks[J]. Applied Thermal Engineering, 2020, doi: 10.1016/j.applthermaleng.2020.115304.
|
15 |
WANG T, TSENG K, ZHAO J, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134: 229-238.
|
16 |
WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable Sustainable Energy Rev, 2016, 64: 106-128.
|
17 |
JAVANI N, DINCER I, NATERER G F, et al. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat & Mass Transfer, 2014, 72: 690-703.
|
18 |
洪文华. 相变材料在锂离子动力电池热管理中的应用研究[D]. 杭州: 浙江大学, 2019.
|
|
HONG W H. Application of phase change materials in thermal management of lithium ion power batteries[D]. Hangzhou: Zhejiang University, 2019.
|
19 |
胡峰, 王海民, 陈思. 811型动力电池内部温度及生热特性测试与分析[J]. 储能科学与技术, 2020, 9(3): 993-1000.
|
|
HU F, WANG H M, CHEN S. Test and analysis of internal temperature and heat generation characteristics of type 811 power battery[J]. Energy Storage Science and Technology, 2020, 9(3): 993-1000.
|